Honors	A	lgebra 3-4
Chapter	3	Pre-Quiz Review

Name	Key		
		Period	_

#1. Complete the table to determine the amount of money P that should be invested at r = 8% compounded continuously to produce a final balance of \$200,000 in t years. (round to nearest dollar)

t	1	10	20	30	40	50
P	\$ 184623	9 89866	\$ 40379	\$18144	38152	93663
,	1 0 0					3 1 2

#2. Complete the table to determine the amount of money P that should be invested at r = 10% compounded monthly to produce a final balance of \$200,000 in t years. (round to nearest dollar)

t	1 10	20	30	40	50
<u>P</u>	\$181045 \$73881	\$ 27292	\$10082	43724	\$ 1376

$$A = P(1+\frac{\pi}{n})^{n+1} = 12$$

$$200000 = P(1+\frac{\pi}{n})^{n+1} = \frac{200000}{(1+\frac{\pi}{n})^{n+1}} \quad \text{(put in calc YI = , use table } 1isting)$$

#3. Write the exponential equation in logarithmic form: $4^3 = 64$ /034 64 = 3

#4. Evaluate the expression without using a calculator:
$$\log_6 216$$
 $\log_6 216 = x$ $6 \le 216 = x$ $6 \le 216 = x$

#5. Evaluate the logarithm using the change of base formula (round to 3 decimal places): $\log_{12} 200$

#6. Rewrite the expression as a sum, difference, and/or multiple of logarithms:
$$\log_{10} \frac{5\sqrt{y}}{x^2}$$

$$\log_{10} 5\sqrt{y} - \log_{10} x^2 \qquad \log_{10} 5 + \log_{10} y^{1/2} - \log_{10} x^2$$

$$\log_{10} 5 + \log_{10} \sqrt{y} - \log_{10} x^2 \qquad \log_{10} 5 + \log_{10} y - 2\log_{10} x$$

#7. Write the expression as the logarithm of a single quantity: $3\left[\ln x - 2\ln(x^2+1)\right] + 2\ln 5$ $3\ln x - 6\ln(x^2+1) + 2\ln 5$ $\ln x^3 - \ln(x^2+1)^6 + \ln 5^2$ $\ln x^3 - \ln(x^2+1)^6 + \ln 25$ $\ln \left(\frac{35}{25}\right)$

#8. Solve for x:
$$8^x = 512$$

$$8^{x} = 512$$

$$8 \cdot 8 \cdot 8 = 572 - 6x - \log_{8}(8^{x}) = \log_{8} 572$$

$$\times = \log_{7} x = 4$$

$$\times = \log_{8} 572 = \frac{\log_{10} x}{\log_{10} x} = \frac{1}{3}$$

#9. Solve for x:

#10. The population of a town is modeled by $P = 12,620 e^{0.0118t}$

where t = 0 represents the year 2000.

According to this model, when will the population reach 17,000?

model, when will the population reach 17,000?

$$17000 = 12620e^{-0118t}$$
 $17000 = 12620e^{-0118t}$
 $t = \frac{l_1(\frac{19020}{12620})}{1018}$
 $l_2(\frac{19020}{12620}) = l_3(e^{-0118t})$
 $t = 2512 + 7000$
 $l_3(\frac{19020}{12620}) = l_3(e^{-0118t})$
 $l_4(\frac{19020}{12620}) = l_5(18t)$

#11. A deposit of \$10,000 is made in a savings account for which the interest is compounded

continuously. The balance will double in 12 years.

(b) Find the balance after 1 year.

the after 1 year.

$$A = 10000 e^{-0.548(1)} = \left(\frac{410.545.03}{10.545.03}\right)$$

(c) The effective yield of a savings plan is the percent increase in the balance after 1 year. Find the effective yield.

-87=512

$$\text{E. 3#} \qquad \left(\frac{\delta \chi \xi \Omega}{\delta (1+\zeta \chi)}\right) \text{at . 7#}$$

$$x^{01}$$
3017 - 10^{210} 10810 $1 + 5^{01}$ 301 9#

9/818	\$3724	\$10085	\$51565	18857\$	2181045	ď
05	017	30	70	10	Ţ	3

E99E\$	\$8125	\$1814	6/£0‡\$	99868\$	\$184623	d
05	017	30	70	10	Ţ	3

7#

Honors Algebra 3-4

Chapter 3 Pre-Quiz Review

Name			
	 	Period	

#1. Complete the table to determine the amount of money P that should be invested at r=8% compounded continuously to produce a final balance of \$200,000 in t years. (round to nearest dollar)

	· ,					
t	1	10	20	30	40	50
P	2					

#2. Complete the table to determine the amount of money P that should be invested at r = 10% compounded monthly to produce a final balance of \$200,000 in t years. (round to nearest dollar)

t	1	10	20	30	40	50
D	*	. 10	20	30	40	30
<u> </u>			·			

- #3. Write the exponential equation in logarithmic form: $4^3 = 64$
- #4. Evaluate the expression without using a calculator: $\log_6 216$
- #5. Evaluate the logarithm using the change of base formula (round to 3 decimal places): $\log_{12} 200$
- #6. Rewrite the expression as a sum, difference, and/or multiple of logarithms: $\log_{10} \frac{5\sqrt{y}}{x^2}$
- #7. Write the expression as the logarithm of a single quantity: $3\left[\ln x 2\ln\left(x^2 + 1\right)\right] + 2\ln 5$

- #8. Solve for x: $8^x = 512$
- #9. Solve for x: $\log_7 x = 4$
- #10. The population of a town is modeled by $P = 12,620 e^{0.0118t}$ where t = 0 represents the year 2000. According to this model, when will the population reach 17,000?

- #11. A deposit of \$10,000 is made in a savings account for which the interest is compounded continuously. The balance will double in 12 years.
 - (a) What is the annual interest rate for this account?
 - (b) Find the balance after 1 year.
 - (c) The effective yield of a savings plan is the percent increase in the balance after 1 year. Find the effective yield.

$$x_{01} gol \Delta - \sqrt{01} gol \frac{1}{\Delta} + \delta_{01} gol . 34 \qquad 261.2.2.132 \qquad \# \qquad 261.2.2.84 \qquad \xi = 40 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V - 2 log_{10} V = 4 \frac{1}{2} og_{10} V = 4$$

9151\$	\$315¢	\$10087	267 <i>L</i> 78	188£7 2	2181042	ď
05	0†	30	70	10	Ţ	3

£99£\$	28125	ttisis	67£0 4 \$	99868\$	\$184623	ď
05	0Þ	30	70	01	Ţ.	1