AP Calculus BC – Unit 2 Extra Practice

2.1 – Extra Practice

Use the limit definition of the derivative to find the derivative:

#8b.
$$f(x) = -x^2 + 3x + 7$$
 #9b. $r(t) = -t^2 - 4t$

Use the limit definition of the derivative to find the derivative of f(x), then find f'(x) at the given x-value and write the equation of a tangent line to the function at this point of tangency:

#10b. $f(x) = x^2 + 5x - 6$ at x = 3

#11b.
$$f(x) = \sqrt{x-1}$$
 at $x = 5$

Use the limit definition of the derivative to find the derivative of f(x), then find f'(x) at the given x-value and write the equation of a tangent line to the function at this point of tangency:

#12b.
$$f(x) = \frac{6}{x+2}$$
 at $x = 0$

Given the graph of f(x), sketch the graph of f'(x) on the same axes:

#15b. The given limit gives the value of the derivative of a function at a particular x-value. Identify the function and x-value:

$$\lim_{h \to 0} \frac{\tan 3(x+h) - \tan(3x)}{h}$$

2.2 – Extra Practice

Find the derivative:

#8b.
$$g(t) = t^2 - \frac{4}{t^3}$$
 #9b. $f(x) = \frac{2x^4 + 4}{x^3}$

#10b.
$$g(x) = x^{\frac{1}{4}} - x^{\frac{1}{2}} + 3x$$
 #11b. $f(x) = 3\sqrt{x} + \sqrt[4]{x} + 5\sqrt[3]{x^2}$

#12b. $g(x) = 3\cos x + 5e^x$

#13b. $f(x) = 7^x + 4\sin x$

#14b.
$$r(t) = \frac{5t^3 - t^6}{t^4} + \frac{6t}{t^3} - \frac{7t^3}{t^3}$$
 #15b. $r(t) = \frac{2t^5}{t^3} + \frac{t^2 - 6t}{t^4}$

2.3 – Extra Practice

Find the derivative:

#10b.
$$g(x) = (x^3 + 2x)^3 (4x - x^3)^5$$
 #11b. $h(x) = \frac{x^2}{2\sqrt{x} + 1}$

#12b. Find
$$f'(4)$$
 for $f(x) = \frac{3x^3 - 5x}{x^2 - 2}$

#13b. Find $f'(\pi)$ for $f(x) = e^x \cos x$

#13b. Find (and fully simplify)
$$f'(x)$$
 for $f(x) = \frac{x^2 + 5x + 6}{x^2 - 4}$

Let
$$p(x) = f(x)g(x)$$
 and $q(x) = \frac{f(x)}{g(x)}$

#14. Find p'(4)

If the graphs of

f(x) and g(x) are:

#15. Find q'(7)

2.4 – Extra Practice

Find the derivative:

#9b.
$$y = 5(2-x^3)^4$$
 #10b. $f(t) = \sqrt{5-t}$

#11b.
$$f(t) = \left(\frac{1}{t-3}\right)^2$$
 #12b. $h(t) = \left(\frac{t^2}{t^3+2}\right)^2$

#13b.
$$y = \frac{e^x - e^{-x}}{2}$$
 #14b. $f(x) = \ln\left(\frac{2x}{x+3}\right)$

#15b. $y = \ln |\csc(x)|$

#16b. Write an equation for the tangent line to

$$y = \sqrt[5]{3x^3 + 4x}$$
 at $x = 2$

#17b. Write an equation for the tangent line to

$$f(x) = 2\tan^3(x) \quad at \quad x = \frac{\pi}{4}$$

#18b. Find f''(x) for $f(x) = 6(x^3 + 4)^3$

#19b. Find f''(x) for $f(x) = \sin(x^2)$

#20 (hint) First, take the derivative of g(x) and remember that the Chain Rule is required.

#6b. Find
$$\frac{dy}{dx}$$
 if $2x^3 + 3y^3 = 64$

#7b. Find
$$\frac{dy}{dx}$$
 if $x^3y^3 - y = x$

#8b. Find
$$\frac{dy}{dx}$$
 if $3e^{xy} - x = y^2$

#9b. Find
$$\frac{dy}{dx}$$
 if $xy = 6$

#10b. Find
$$\frac{d^2y}{dx^2}$$
 (the 2nd derivative) if $x^2 - y^2 = 36$

#11b. Find
$$\frac{dy}{dx}$$
 if $y = (1+x)^{\frac{1}{x}}$

#12b. Find
$$\frac{dy}{dx}$$
 if $y = (\ln(x))^{\ln(x)}$

2.6 – Extra Practice

Find the derivative:

#5b.
$$f(x) = \arcsin(x^2)$$
 #6b. $g(x) = \frac{\arccos(x)}{x+1}$

Find the derivative:

Find the derivative:
#7b.
$$y = e^{2t} \ln(t^2 + 4) - \frac{1}{2} \arctan\left(\frac{t}{3}\right)$$

Find an equation of the tangent line to the graph of the function at the given x-value: $\sqrt{2}$

#8b.
$$y = \frac{1}{2} \arccos(x)$$
 $x = -\frac{\sqrt{2}}{2}$