2.1 - Required Practice

#1. Find
$$f'(x)$$
 for $f(x) = x^2 - x ...$

Find
$$f'(x)$$
 for $f(x) = x^2 - x$

...using
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
.

...using
$$\lim_{x\to 2} \frac{f(x)-f(2)}{x-2}$$
.

Then plug in to find f'(2) and f(2) and discuss: what does f'(2) and f(2) tell you about f(x)?

Finally, sketch f(x) using your calculator, find the equation of a tangent line to f(x) at x = 2 and add it to your sketch.

#2. Find the x-values for which the derivative does not exist and state why it does not exist:

Given the graph of f(x) , sketch the graph of f'(x) :

#3.

#5.
$$\lim_{h\to 0} \frac{\sqrt{h+1}-1}{h}$$

#6.
$$\lim_{x \to 3\pi} \frac{\cos(x) + 1}{x - 3\pi}$$

#7. Find
$$f'(x)$$
 for $f(x) = \frac{1}{\sqrt{x}}$, then find $f(1)$ and $f'(1)$

Use the limit definition of the derivative to find the derivative:

#8.
$$f(x) = x^2 + x - 3$$

#9.
$$v(t) = t^2 - 5$$

Use the limit definition of the derivative to find the derivative of f(x), then find f'(x) at the given x-value and write the equation of a tangent line to the function at this point of tangency:

#10.
$$f(x) = x^3$$
 at $x = 2$

#11.
$$f(x) = \sqrt{x}$$
 at $x = 1$

Use the limit definition of the derivative to find the derivative of f(x), then find f'(x) at the given x-value and write the equation of a tangent line to the function at this point of tangency:

#12.
$$f(x) = x + \frac{4}{x}$$
 at $x = -4$

Given the graph of f(x), sketch the graph of f'(x) on the same axes:

#13.

#14.

#15. The given limit gives the value of the derivative of a function at a particular x-value. Identify the function and x-value:

$$\lim_{h\to 0}\frac{\sin\left(\frac{\pi}{3}+h\right)-\sin\left(\frac{\pi}{3}\right)}{h}$$

2.2 – Required Practice

#1.
$$f(x) = x^5$$

$$#2. f(x) = x^{\left(\frac{2}{3}\right)}$$

#3.
$$g(t) = \frac{2}{t^5}$$

#4.
$$f(x) = 3x^5 + 4e^x + 7$$

$$\#5. \ g(x) = \frac{x^4 - 3x^2}{2x}$$

- #6. For what values of a and b is the line 2x + y = b tangent to the parabola $y = ax^2$ when x = 2?
- #7. Find a cubic function $y = ax^3 + bx^2 + cx + d$ whose graph has horizontal tangents at the points (-2, 6) and (2, 0).

#8.
$$f(x) = 8x + \frac{3}{x^2}$$

$$#9. \ f(x) = \frac{4x^3 + 3x^2}{x}$$

#10.
$$g(x) = x^{\frac{2}{3}} - x^{\frac{1}{3}} + 4$$

#11.
$$f(x) = \sqrt{x} - 6\sqrt[3]{x}$$

$$#12. g(x) = \sin x + e^x$$

#13.
$$f(x) = 4^x + \cos x$$

#14.
$$v(t) = \frac{4}{t^2} - \frac{3t^2 - t}{t^3}$$

#15.
$$r(t) = \frac{2t^5}{t^3} + \frac{t^2 - 6t}{t^4}$$

2.3 – Required Practice

#1.
$$f(x) = x^3 e^x$$

#2.
$$f(x) = 2x^3$$

#3.
$$f(x) = 2x^3 e^x$$

#4.
$$f(x) = \frac{2x^5 - x^3}{x^2 + 3x}$$

#5.
$$y = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$$

$$#6. y = \sqrt{x} \left(x^2 - 2x \right)$$

#7.
$$y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$

If f and g are the functions whose graphs are show, let

$$u(x) = f(x)g(x)$$
 and $v(x) = f(x)/g(x)$.

#8. Find u'(1)

#9. Find v'(5)

#10.
$$g(x) = (2x-3)^2 (1-5x)^3$$

#11.
$$h(x) = \frac{\sqrt{x}}{x^3 + 1}$$

#12. Find
$$f'(1)$$
 for $f(x) = \frac{x^2 - 4}{x - 3}$

#13. Find
$$f'\left(\frac{\pi}{2}\right)$$
 for $f(x) = e^x \sin x$

#13. Find (and fully simplify)
$$f'(x)$$
 for $f(x) = \frac{4-3x-x^2}{x^2-1}$

Let
$$p(x) = f(x)g(x)$$
 and $q(x) = \frac{f(x)}{g(x)}$

If the graphs of

f(x) and g(x) are:

#14. Find p'(1)

#15. Find q'(4)

2.4 – Required Practice

Find the derivative:

#1.
$$y = e^{(x^2+3)}$$

$$#2. y = \ln\left(\sin\left(e^{x^5}\right)\right)$$

#3.
$$y = \sin^3(x^3 + 7x)$$

#4.
$$y = (x^3 + 4x)^5$$

$$#5. y = \sin(3x^2 + x)$$

If f and g are the functions whose graphs are shown, let

$$u(x) = f(g(x)), v(x) = g(f(x)), \text{ and } w(x) = g(g(x)).$$

Find each derivative, if it exists.

If it does not exist, explain why.

#6.
$$u'(1)$$

Find the derivative:

#9.
$$y = (2x-7)^3$$

#10.
$$g(x) = \sqrt{4-3x^2}$$

#11.
$$y = -\frac{3}{(t-2)^4}$$

#12.
$$g(x) = \left(\frac{x+5}{x^2+2}\right)^2$$

#13.
$$y = \frac{2}{e^x + e^{-x}}$$

#14.
$$f(x) = \ln\left(\frac{x}{x^2 + 1}\right)$$

$$#15. y = \ln \left| \sin \left(x \right) \right|$$

#16. Write an equation for the tangent line to

$$y = \sqrt{x^2 + 8x} \quad \text{at} \quad x = 1$$

#17. Write an equation for the tangent line to

#18. Find
$$f''(x)$$
 for $f(x) = 5(2-7x)^4$

$$f(x) = \tan^2(x)$$
 at $x = \frac{\pi}{4}$

#19. Find
$$f''(x)$$
 for $f(x) = \sec^2(\pi x)$

#20. Let f be a twice-differentiable function defined on the interval -1.2 < x < 3.2 with f(1) = 2.

The graph of f'(x), the derivative is shown. Define $g(x) = e^{f(x)}$. Write an equation for the line tangent to the graph of g ant x = 1.

2.5 – Required Practice

#1. Find the slope of the line tangent to this curve $x^3 + xy + y^3 = 5$ at the point (-1, 2).

#2. Find
$$\frac{dy}{dx}$$
 if $x^2y + y^2x = -2$

#3. Find
$$\frac{dy}{dx}$$
 if $y = \frac{(x^2 + 3x)^4 (5x^3)}{(2x^4 - 4x)^2}$

#4. Find
$$\frac{dy}{dx}$$
 if $y = x^{(5x^3+2x)}$

#5. Find
$$\frac{dy}{dx}$$
 if $y = x^{\left(\frac{2}{x}\right)}$

#6. Find
$$\frac{dy}{dx}$$
 if $x^{\frac{1}{2}} + y^{\frac{1}{2}} = 16$

#7. Find
$$\frac{dy}{dx}$$
 if $x^3 - xy + y^2 = 7$

#8. Find
$$\frac{dy}{dx}$$
 if $e^{xy} + x^2 - y^2 = 10$

#9. Find
$$\frac{dy}{dx}$$
 if $y^2 = \ln x$

#10. Find
$$\frac{d^2y}{dx^2}$$
 (the 2nd derivative) if $x^2 + y^2 = 4$

#11. Find
$$\frac{dy}{dx}$$
 if $y = (x-2)^{x+1}$

#12. Find
$$\frac{dy}{dx}$$
 if $y = x^{\ln(x)}$

2.6 - Required Practice

#1. If
$$f(x) = x^3 + x$$
 and $g(x) = f^{-1}(x)$
and $g(2) = 1$, what is the value of $g'(2)$?

#2. Find
$$f'(x)$$
 and $f''(x)$ if $f(x) = \frac{\sin x}{1 + \cos x}$

#3. Find the equation of the tangent line to the curve
$$y = x + \cos x$$
 at $(0,1)$

#4. Find
$$y'$$
 if $y = \ln(t^2 + 4) - \frac{1}{2}\arctan(\frac{t}{2})$

$$#5. f(x) = \arcsin(x+1)$$

#6.
$$g(x) = \frac{\arcsin(3x)}{x}$$

Find the derivative:

#7.
$$y = 2x \arccos(x) - 2\sqrt{1 - x^2}$$

Find an equation of the tangent line to the graph of the function at the x-value:

#8.
$$y = 2\arcsin(x)$$
 $x = \frac{1}{2}$

Unit 2 Test Review

#1.
$$f(x) = 3x^5 + 5e^{4x} + \sin(x^3 + 2x) + \ln(x^4)$$

#2.
$$f(x) = (3x+4)^2 \tan(x^3)$$

#3.
$$f(x) = \frac{\ln(x^5)}{\sin(e^{2x})}$$

#4.
$$f(t) = \cos(\ln(e^{3t}))$$

#5.
$$y = 2^{\sin(\pi x)}$$

#6.
$$y = x^{(x^3 + 5x + 7)}$$

#7.
$$y = \sqrt[3]{x^2 + 2} (x^2 + 1)$$

 $#8. \sqrt{x} + x\sqrt{y} = 1$

#9. Find y' and y'' for $x^4 - y^4 = 16$

#10. Find the equation of the tangent line to the curve at the given point: $y = \sin(\sin(x))$ $(\pi, 0)$

#11. If $y = e^{x^2}$, find $\frac{d^2y}{dx^2}$

#12. Find an equation of the tangent line to the curve at the given point: $y^4 + xy = x^3 - x + 2$ at (1,1)

#13. Find
$$\frac{dy}{dx}$$
 for $e^{x-y} = 2x^2 - y^2$

#14. Find
$$\frac{dy}{dx}$$
 for $y-x^2y^2=6$

#15. Find
$$\frac{d^2y}{dx^2}$$
 for $x^2 + y^2 = 6$

#16. Find
$$\frac{dy}{dx}$$
 for $\operatorname{arcsec}(5x^2) = \ln(y)$

#17. Evaluate
$$\lim_{h\to 0} \frac{\sin\left(\frac{\pi}{3}+h\right)-\sin\left(\frac{\pi}{3}\right)}{h}$$