AP Calculus BC – Unit 5, Part 1 Extra Practice

5.1 – Extra Practice

On #4b and #5b, sketch the region by hand (no calculator) and find the area enclosed by the curves (integrate by hand).

#4b.
$$y = x^2$$
 and $y = x^3$

On #4b and #5b, sketch the region by hand (no calculator) and find the area enclosed by the curves (integrate by hand).

#5b.
$$x = -9 + y^2$$
 and $x = y + 3$

On the rest of this assignment, sketch the curves and find the area enclosed (use your calculator for the sketch and the integral evaluation).

#6b.
$$y = (x-1)^3$$
 and $y = x-1$

#7b.
$$y = -x^3 + 2$$
, $y = x - 3$, $x = -1$, and $x = 1$

#8b. $x = 2y - y^2$ and x = -y

#9b.
$$y = 2\sin(x)$$
 and $y = \tan(x)$ $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$

5.2 – Extra Practice

Sketch and find the volume (use your calculator for the sketch and the integral evaluation).

#7b.
$$y = -x^2 + 3x$$
, $y = 0$ about the $x - axis$

#7c.
$$y = \sin(x)$$
, $x = \frac{\pi}{6}$, $x = \frac{5\pi}{6}$, $y = 0$ about the $x - axis$

#8b.
$$y = 3x + 5$$
, $y = 5$, $y = 14$, $x = 0$ about the $y - axis$

#9b. $y = 2x^2$, y = 8, x = 0 about the y - axis

#10b. $y = x^2$, $y = \sqrt{x}$ around y = 3

#11b. $y = x^2 - 4x + 9$, y = 2x + 1 around x = 1

#12b. $y = x^2 - 4x + 9$, y = 2x + 1 around y = 9

5.3 – Extra Practice

Sketch and find the volume using shell method (use your calculator for the sketch and the integral evaluation).

#7b.
$$y = x^2 + 3x$$
, $x = 0$, $x = 3$, $y = 0$ around the $y - axis$

#7c.
$$y = \sin(x)$$
, $x = 0$, $x = \frac{5\pi}{6}$, $y = 0$ around the $y - axis$

#8b.
$$y = 3x$$
, $y = 5$, $x = 0$ around the $x - axis$

#9b. $y = x^2$, $y = \sqrt{x}$ around y = 3

#10b. y = -2x + 8, y = 0, x = 0 around x = 5

#11b. $y = x^3$, y = 0, x = 2 around x = 4

a) using Disk method...

b) using Shell method...

#12b. $y = x^2$, y = 0, x = 1, x = 2 around the x - axis

a) using Disk method...

b) using Shell method...