Name: _

5.1 – Required Practice

#1. Find the area enclosed by y = -x+1 and $y = -x^2 + 3x + 1$

10,667

#2. Find the area enclosed by x = -y and $x = -y^2 + 2y$

#3. Find the area enclosed by $f(x) = \sqrt[3]{x-1}$ and g = x-1

之

On #4 and #5, sketch the region by hand (no calculator) and find the area enclosed by the curves (integrate by hand).

#4.
$$y = x^2 - 4x + 3$$
 and $y = -x^2 + 2x + 3$

On #4 and #5, sketch the region by hand (no calculator) and find the area enclosed by the curves (integrate by hand).

#5.
$$x = 4 - y^2$$
 and $x = y - 2$

On the rest of this assignment, sketch the curves and find the area enclosed (use your calculator for the sketch and the integral evaluation).

#6.
$$y = 3x^3 - 3x$$
 and $y = 0$

#7.
$$y = x^2 - 1$$
, $y = -x + 2$, $x = 0$, and $x = 1$

#8. $x = y^2$ and x = y + 2

4.5

#9.
$$y = \sin(x)$$
 and $y = \cos(2x)$ $-\frac{\pi}{2} \le x \le \frac{\pi}{6}$

5.2 - Required Practice

#1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y=x^2$$
, y-axis, $y=4$, in the first quadrant; about the $y-axis$

25,133

#2.
$$y=x^2$$
, y-axis, $y=4$, in the first quadrant; about the x-axis

#3. $y=x^2$, y-axis, y=4, in the first quadrant; about y=-2

147,445

#4.
$$y = x^2$$
, $x = y^2$; about $x = -1$

#5. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y=0$$
, $y=\sin x$, $0 \le x \le \pi$; about $y=-2$

$$\int_{0}^{\pi} \pi \left(sh(x)+2\right)^{2} dx - \int_{0}^{\pi} \pi \left(z\right)^{2} dx$$

#6.
$$y=x^2$$
, y-axis, $y=4$, in the first quadrant; about $y=-3$

Sketch and find the volume (use your calculator for the sketch and the integral evaluation).

#7.
$$y = 3x + 5$$
, $x = 2$, $x = 7$, $y = 0$ about the $x - axis$

#8.
$$y = x^2 + 4$$
, $x = 0$, $y = 8$ about the $y - axis$

0,942

#10. y = 2x + 3, x = 0, y = 9 around y = 9

#11. y = -2x + 8, y = 0, x = 0 around x = 5

368.614

#12. y = -2x + 8, y = 0, x = 0 around y = 9

636.696

#1. Find volume of solid obtained by rotating about the y-axis

10,053

#2. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis. Sketch the region and a typical shell.

$$y = x^2 - 6x + 10$$
, $y = -x^2 + 6x - 6$

#3. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the x-axis. Sketch the region and a typical shell.

$$x = \sqrt{y}$$
, $x = 0$, $y = 1$

#4. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch the region and a typical shell.

$$y = x^2$$
, $y = 0$, $x = 1$, $x = 2$; about $x = 4$

#5. Set up, but do not evaluate, an integral....

$$x = \sqrt{\sin y}$$
, $0 \le y \le \pi$, $x = 0$; about $y = 4$

#6. Use a graph to estimate the x-coordinates of the points of intersection of the given curves. Then use this information to estimate the volume of the solid obtained by rotating about the y-axis the region enclosed by these curves.

$$y = x^4$$
, $y = 3x - x^3$

Sketch and find the volume using shell method (use your calculator for the sketch and the integral evaluation).

#7. y = 3x + 5, x = 0, x = 7, y = 0 around the y - axis

2924,823

#8. $y = x^2 + 4$, x = 0, y = 7 around the x - axis

#9. y = 2x + 3, x = 0, y = 9 around y = 9

113.097

#10. $y = x^2 - 4x + 9$, y = 2x + 1 around x = 1

#11.
$$y = \frac{10}{x^2}$$
, $y = 0$, $x = 1$, $x = 5$ around the $y - axis$

a) using Disk method...

101,124

b) using Shell method...

#12.
$$y = \frac{1}{x}$$
, $y = 0$, $x = 1$, $x = 2$ around the $x - axis$

a) using Disk method...

1,571

b) using Shell method...

Unit 5 Part 1 Test Review

For #1-4, find the area bounded by the given curves. Sketch and setup the integral, but do not evaluate the integral.

#1)
$$y = x^3$$
, $y = x^2 - 4x + 4$, $x = 2$

#2)
$$x-2y+7=0$$
, $y^2-6y-x=0$

#3)
$$y = e^{-x^2}$$
, $y = 1 - \cos x$, $x = 0$

#4)
$$y = 2^x$$
, $y = 8$, $x = 0$

For #5-8, use the <u>disk</u> method to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch and setup the integral, but do not evaluate the integral.

#5)
$$y = x^2$$
, $y = 4$, $x = 0$; about the $x - axis$

#6)
$$y = e^{-2x}$$
, $y = 1 + x$, $x = 1$, about the $x - axis$

#7)
$$y = x^3$$
, $y = 8$, $x = 0$, about the $y - axis$

#8)
$$y = x^3$$
, $y = 8$, $x = 0$, about $x = 2$

For #9-14, use the <u>shell</u> method to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch and setup the integral, but do not evaluate the integral.

#9)
$$y = x^2$$
, $y = 0$, $x = -2$, $x = -1$; about the $y - axis$

#10)
$$y = x^2$$
, $y = 0$, $x = 1$, $x = 4$; about $x = 4$

#11)
$$y = x^3$$
, $y = x^2$, about $y = 1$

#12)
$$x+3=4y-y^2$$
, $x=0$, about the $x-axis$

#13)
$$y = x^3$$
, $y = 8$, $x = 0$, about the y-axis

#14)
$$y = \cos x$$
, $y = 0$, $x = \frac{3\pi}{2}$, $x = \frac{5\pi}{2}$; about the y-axis

Unit 5 Part) Test Review - Socutions

$$A = \int_{1}^{2} \left[x^{3} - \left(x^{2} - 4x + 4 \right) \right] dx$$

$$(42)$$
 $x = 2y - 7$
 $x = y^2 - 6y$

$$A = \int_{1}^{7} [(2y-7)-(y^2-6y)] dy$$

Intersections:
$$\begin{cases} x - 2y + 7 = 0 \\ y^2 - 6y - x = 0 \end{cases}$$

$$(77) \quad x = 2y - 7$$

$$y^{2} - 6y - (2y - 7) = 0$$

$$+ x \quad y^{2} - 8y + 7 = 0$$

$$(y - 7)(y - 1) = 0$$

$$y = 7 \quad y = 1$$

$$x = 7 \quad x = 7$$

$$(77) \quad (-57)$$

$$A = \int_{0}^{\infty} \left[\left(e^{-X^{2}} \right) - \left(1 - \cos(x) \right) \right] dx$$

(0. 9419,0.4118) X

$$V = \int_{a}^{b} \pi r^{2} dh - \int_{a}^{b} \pi r^{2} dh$$

$$\int_{a}^{c} \pi (4)^{2} dx - \int_{a}^{c} \pi (x^{2})^{2} dx$$

$$\frac{y}{t} = \frac{dy}{dx}$$

$$\frac{dy}{dx}$$

$$\frac{dy}{$$

$$V = \int_{a}^{b} \pi r^{2} dh - \int_{a}^{b} \pi r^{2} dh$$

$$\left[\int_{a}^{b} \pi (1+x)^{2} dx - \int_{a}^{b} \pi (e^{-2x})^{2} dx\right]$$

$$V = \int_{a}^{b} z \pi r h dr$$

$$\int_{a}^{-1} z \pi (-x) (x^{2}) dx$$

$$\left[-z \right]$$

$$410) y=x^{2}$$

$$\sqrt{=} \int_{a}^{b} 2\pi r h dh$$

$$\sqrt{=} \int_{a}^{4} 2\pi (4-x) (x^{2}) dx$$

$$h = x^{2}$$

$$h = x^{2}$$

$$So r = Y - X$$

$$\#11$$
 $y=x^2$, $y=x^3$
 $x=y$ $x=3y$

$$\int_{0}^{1} 2\pi (1-y)(3\sqrt{y}) dy - \int_{0}^{1} 2\pi (1-y)(\sqrt{y}) dy$$

 $\begin{array}{c}
X+3=4y-y^2\\
+12) X=4y-y^2-3\\
V=\int_{a}^{b}z\pi rhdr\\
a\end{array}$

