AΡ	Calculus	BC -	Unit 5,	Part 1	Required	Practice

5.1 – Required Practice

#1. Find the area enclosed by y = -x+1 and $y = -x^2 + 3x + 1$

#2. Find the area enclosed by x = -y and $x = -y^2 + 2y$

#3. Find the area enclosed by $f(x) = \sqrt[3]{x-1}$ and g = x-1

On #4 and #5, sketch the region by hand (no calculator) and find the area enclosed by the curves (integrate by hand).

#4.
$$y = x^2 - 4x + 3$$
 and $y = -x^2 + 2x + 3$

On #4 and #5, sketch the region by hand (no calculator) and find the area enclosed by the curves (integrate by hand).

#5. $x = 4 - y^2$ and x = y - 2

On the rest of this assignment, sketch the curves and find the area enclosed (use your calculator for the sketch and the integral evaluation).

#6.
$$y = 3x^3 - 3x$$
 and $y = 0$

#7.
$$y = x^2 - 1$$
, $y = -x + 2$, $x = 0$, and $x = 1$

#8. $x = y^2$ and x = y + 2

#9.
$$y = \sin(x)$$
 and $y = \cos(2x)$ $-\frac{\pi}{2} \le x \le \frac{\pi}{6}$

5.2 – Required Practice

#1. Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y=x^2$$
, y-axis, $y = 4$, in the first quadrant; about the $y - axis$

#2. $y=x^2$, y-axis, y = 4, in the first quadrant; about the x-axis

#3. $y=x^2$, y-axis, y = 4, in the first quadrant; about y = -2

#4.
$$y = x^2$$
, $x = y^2$; about $x = -1$

#5. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y=0$$
, $y=\sin x$, $0 \le x \le \pi$; about $y=-2$

#6. $y=x^2$, y-axis, y = 4, in the first quadrant; about y = -3

Sketch and find the volume (use your calculator for the sketch and the integral evaluation).

#7.
$$y = 3x + 5$$
, $x = 2$, $x = 7$, $y = 0$ about the $x - axis$

#8.
$$y = x^2 + 4$$
, $x = 0$, $y = 8$ about the $y - axis$

#9. $y = x^2$, $y = \sqrt{x}$ about the x - axis

#10. y = 2x + 3, x = 0, y = 9 around y = 9

#11. y = -2x + 8, y = 0, x = 0 around x = 5

#12. y = -2x + 8, y = 0, x = 0 around y = 9

5.3 – Required Practice

#1. Find volume of solid obtained by rotating about the y-axis

#2. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis. Sketch the region and a typical shell.

$$y = x^2 - 6x + 10$$
, $y = -x^2 + 6x - 6$

#3. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the x-axis. Sketch the region and a typical shell.

$$x = \sqrt{y}$$
, $x = 0$, $y = 1$

#4. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch the region and a typical shell.

$$y = x^2$$
, $y = 0$, $x = 1$, $x = 2$; about $x = 4$

#5. Set up, but do not evaluate, an integral....

$$x = \sqrt{\sin y}$$
, $0 \le y \le \pi$, $x = 0$; about $y = 4$

#6. Use a graph to estimate the *x*-coordinates of the points of intersection of the given curves. Then use this information to estimate the volume of the solid obtained by rotating about the y-axis the region enclosed by these curves.

$$y = x^4, \quad y = 3x - x^3$$

Sketch and find the volume using shell method (use your calculator for the sketch and the integral evaluation).

#7.
$$y = 3x + 5$$
, $x = 0$, $x = 7$, $y = 0$ around the $y - axis$

#8.
$$y = x^2 + 4$$
, $x = 0$, $y = 7$ around the $x - axis$

#9. y = 2x + 3, x = 0, y = 9 around y = 9

#10. $y = x^2 - 4x + 9$, y = 2x + 1 around x = 1

#11. $y = \frac{10}{x^2}$, y = 0, x = 1, x = 5 around the y - axis

a) using Disk method...

b) using Shell method...

#12. $y = \frac{1}{x}$, y = 0, x = 1, x = 2 around the x - axis

a) using Disk method...

b) using Shell method...

Unit 5 Part 1 Test Review

For #1-4, find the area bounded by the given curves. **Sketch and setup the integral, but do not evaluate the integral.**

#1)
$$y = x^3$$
, $y = x^2 - 4x + 4$, $x = 2$

#2)
$$x-2y+7=0$$
, $y^2-6y-x=0$

#3)
$$y = e^{-x^2}$$
, $y = 1 - \cos x$, $x = 0$

#4)
$$y = 2^x$$
, $y = 8$, $x = 0$

For #5-8, use the <u>disk</u> method to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch and setup the integral, but do not evaluate the integral.

#5)
$$y = x^2$$
, $y = 4$, $x = 0$; about the $x - axis$

#6)
$$y = e^{-2x}$$
, $y = 1 + x$, $x = 1$, about the $x - axis$

#7)
$$y = x^3$$
, $y = 8$, $x = 0$, about the y-axis

#8)
$$y = x^3$$
, $y = 8$, $x = 0$, about $x = 2$

For #9-14, use the **shell** method to find the volume generated by rotating the region bounded by the given curves about the specified axis. **Sketch and setup the integral, but do not evaluate the integral.**

#9)
$$y = x^2$$
, $y = 0$, $x = -2$, $x = -1$; about the $y - axis$

#10)
$$y = x^2$$
, $y = 0$, $x = 1$, $x = 4$; about $x = 4$

#11)
$$y = x^3$$
, $y = x^2$, about $y = 1$

#12)
$$x+3=4y-y^2$$
, $x=0$, about the $x-axis$

#13)
$$y = x^3$$
, $y = 8$, $x = 0$, about the y-axis

#14)
$$y = \cos x$$
, $y = 0$, $x = \frac{3\pi}{2}$, $x = \frac{5\pi}{2}$; about the y-axis