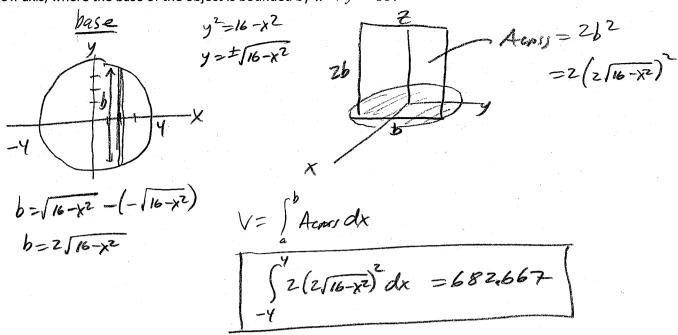
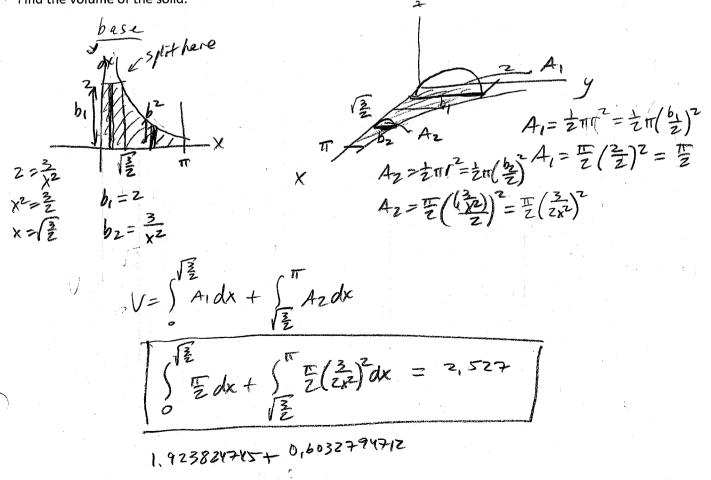

## 5.4 - Extra Practice


#5b. Find the volume of a shape that has cross-sections which are circles perpendicular to the y-axis, where the diameter of the circles are bounded by the triangular area on the x-y plane enclosed by y=2x, y=4, x=0.




#6b. Find the volume of a shape that has cross-sections which are squares perpendicular to the x-axis, where the base of the object is bounded by  $x^2 + y^2 = 4$ .



#7b. Find the volume of a shape that has cross-sections which are rectangles with height twice the base, perpendicular to the *x*-axis, where the base of the object is bounded by  $x^2 + y^2 = 16$ .



#8b. Let R be the region in the first quadrant bounded by the graph of  $y=\frac{3}{x^2}$ , the horizontal line y=2, and the vertical line  $x=\pi$ . Region R is the base of a solid which has semicircular cross sections perpendicular to the x-axis. Find the volume of the solid.



## 5.5 - Extra Practice

Find the arc length of the curve over the given interval.

#7b. 
$$y = -2x^3 + x - 5$$
  $-1 \le x \le 5$ 

$$y' = -6x^2 + 1$$

$$L = \int \int [1 + (-6x^2 + 1)^2] dx = 248.015$$

#8b. 
$$y = \ln(x) + 8$$
  $3 \le x \le 7$ 

$$y = \frac{1}{x}$$

$$L = \int_{3}^{7} \sqrt{1 + (\frac{1}{x})^{2}} dx = 4 \times 10^{94}$$

#9b. 
$$x = y^3 - 2y^2 + 2$$
  $-1 \le y \le 3$ 

$$X^{1} = 3y^{2} - 4y$$

$$L = \int_{-1}^{3} (1 + L) y^{2} - 4y = 15,603$$

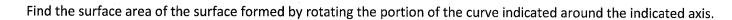
#10b. 
$$x^2 + 2x + y^2 + 8y = 32$$
 for  $x \ge 3$ 

$$(x+1)^2 + (y+y)^2 = 49$$

$$(x+1)^2 = 49 - (y+y)^2$$

$$x+1 = \pm \sqrt{49 - (y+y)^2}$$

$$x = -1 \pm \sqrt{49 - (y+y)^2}$$


$$x' = \pm \left( 49 - (y+y)^2 \right)^{-1/2} \left( -2(y+y)(1) \right)$$

$$+ \frac{1}{4} + \frac{1}{33}$$

$$L = \int \sqrt{1 + \left( \frac{1}{2} \left( 49 - (y+y)^2 \right)^{-1/2} \left( -2(y+y) \right) \right)^2} dy = 13.476$$

$$-\frac{1}{4} - \frac{1}{4} + \frac{1}{4} \left( \frac{1}{4} + \frac{1}{4$$

 $(x+1)^{2} + (y+1)^{2} = 49$   $(x+1)^{2} + (y+1)^{2} = 49$   $(y+1)^{2} + (y+1)^{2} = 41$   $(y+1)^{2} + 33$   $(y+1)^{2} + 33$   $y+1 = \pm \sqrt{3}$   $y = -1 \pm \sqrt{3}$ 



The portion of curve y = -3x + 6 bounded by x = 0, y = 0rotated around the y-axis -3x = y-6

$$3x = y - 6$$
 $x = \frac{y - 6}{-3} = -\frac{1}{3}y + 2$ 
 $x' = -\frac{1}{3}$ 

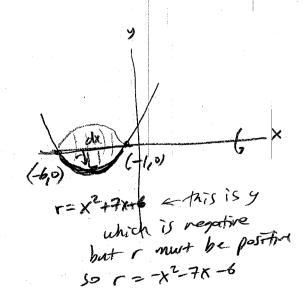
$$\int_{0}^{6} 2\pi(-\frac{1}{3}y+3) / 1 + (-\frac{1}{3})^{2} dy = 39,738$$

$$r = \frac{y-6}{-3} = -\frac{1}{3}y+2$$

#12b.

The portion of curve  $y = x^2$  bounded by x = 4, y = 0rotated around the x – axis




#13b.

The portion of curve  $y-6=x^2+7x$  bounded by y=0rotated around the x – axis

$$|A = \int 2\pi (+x^2 + x - 6) \int 1 + (2x + 7)^2 dx$$

$$-6$$

$$= 291,150$$



## 5.6 - Extra Practice

Find a) the average value of the function over the interval and

b) the average rate of change of the function over the interval

## For this homework evaluate the integrals by hand

#6b. 
$$y=5x+3$$

$$1 \le x \le 6$$
a) any value =  $\frac{1}{6-1} \int_{0}^{6} (5x+3) dx$ 

$$= \frac{1}{5} \left( \frac{1}{5} (6)^{2} + 3(6) \right) - \left( \frac{1}{5} (0)^{2} + 3(0) \right) \int_{0}^{1} (15(6)^{2} + 3(6)) dx$$

b) any rate of change = 
$$\frac{y(6)-y(1)}{6-1}$$
  
=  $\frac{[5(6)+3)-(5(1)+3)}{5}$ 

#7b. 
$$y = \frac{1}{x}$$
  $2 \le x \le 10$ 

a) any value =  $\frac{1}{10-2} \le \frac{10}{8} dx$ 

=  $\frac{1}{8} \left( \ln x \right) \frac{10}{2} = \frac{1}{8} \left( \ln (10) - \ln (2) \right)$ 

b) any rate of change = 
$$\frac{y(10)-y(2)}{(-10)^{-1}(2)}$$
=  $\frac{y(10)-y(2)}{(-10)^{-1}(2)}$