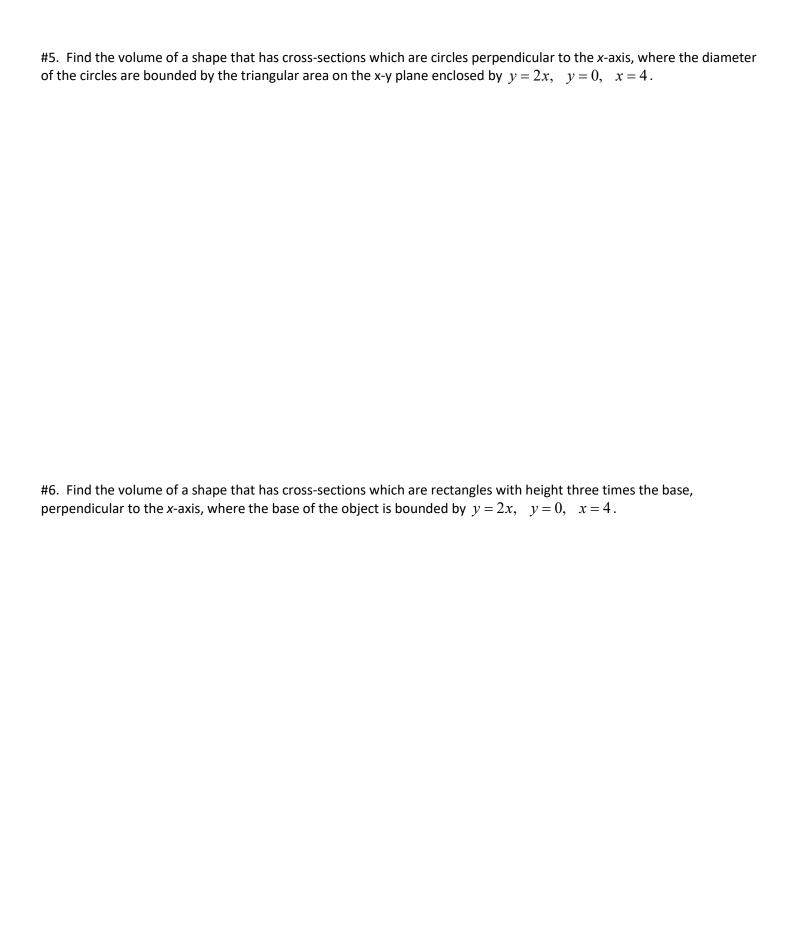
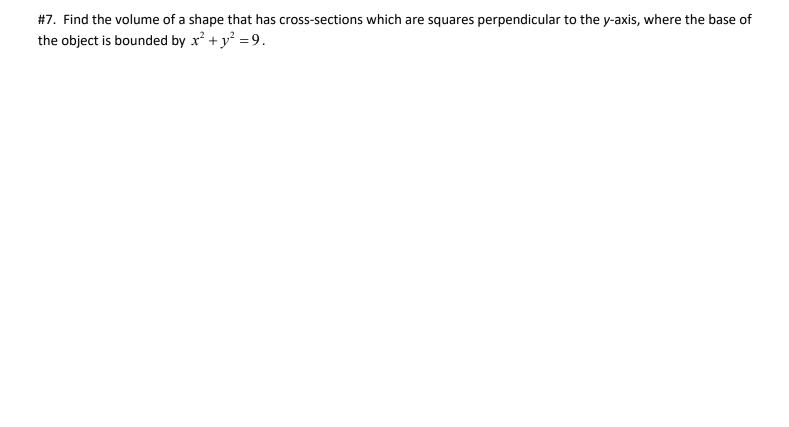

5.4 – Required Practice

#1. Base bounded by $y = x^{1/2}$, x = 9, x-axis. Sections perpendicular to the x-axis are semicircles. Find the volume.

#2. Find the volume of the solid formed by cross-sections which are perpendicular to the x-axis and form squares. The base of the shape is in the x-y plane, defined by $y=x^2$, y=0, and x=2.




#4.

Let f and g be the functions given by f(x) = 2x(1-x) and $g(x) = 3(x-1)\sqrt{x}$ for $0 \le x \le 1$. The graphs of f and g are shown in the figure above.

- (a) Find the area of the shaded region enclosed by the graphs of f and g.
- (b) Find the volume of the solid generated when the shaded region enclosed by the graphs of f and g is revolved about the horizontal line y = 2.
- (c) Let h be the function given by h(x) = kx(1-x) for $0 \le x \le 1$. For each k > 0, the region (not shown) enclosed by the graphs of h and g is the base of a solid with square cross sections perpendicular to the x-axis. There is a value of k for which the volume of this solid is equal to 15. Write, but do not solve, an equation involving an integral expression that could be used to find the value of k.

#8. Let *R* be the region in the first quadrant bounded by the graph of $y = \frac{1}{x}$, the horizontal line y = 1, and the vertical

line x = e. Region R is the base of a solid which has semicircular cross sections perpendicular to the x-axis. Find the

volume of the solid.

5.5 – Required Practice

#1. Graph the curve and visually estimate its length. Then find its exact length.

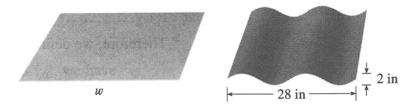
$$y = \frac{x^3}{6} + \frac{1}{2x}, \quad \frac{1}{2} \le x \le 1$$

#2. Find the length of the curve.

$$y = \frac{x^4}{4} + \frac{1}{8x^2}, \quad 1 \le x \le 3$$

#3. Let R be the region enclosed by the graphs of $y = \ln(x^2 + 1)$ and $y = \cos(x)$.

What is the length of the boundary of region R?


#4. Find the area of the surface obtained by rotating the curve about the *x*-axis.

$$y = x^3, \ 0 \le x \le 2$$

#5. The given curve is rotated about the *y*-axis. find the area of the resulting surface.

$$x = \sqrt{2y - y^2}, \quad 0 \le y \le 1$$

#6. A manufacturer of corrugated metal roofing wants to produce panels that are 28 in. wide and 2 in. thick by processing flat sheets of metal as shown in the figure. The profile of the roofing takes the shape of a sine wave. Verify that the sine curve has the equation $y = \sin(\pi x/7)$ and find the width w of a flat metal sheet that is needed to make a 28-inch panel.

Find the arc length of the curve over the given interval.

#7.
$$y = 3x^2$$
 $-3 \le x \le 3$

#8.
$$y = 4x^3 - 7x^2 + x - 27$$
 $-4 \le x \le 2$

#9.
$$x = y^2 + 3y - 4$$
 $0 \le y \le 2$

#10.
$$x^2 - 4x + y^2 + 6y = 62$$
 for $x \ge 2$

Find the surface area of the surface formed by rotating the portion of the curve indicated around the indicated axis.

#11. The portion of curve y = -3x + 6 bounded by x = 0, y = 0 rotated around the x - axis

#12. The portion of curve $y = x^2$ bounded by x = 0, y = 9 rotated around the y - axis

#13. The portion of curve $2x = y^2 + 6$ bounded by y = 0, y = 2 rotated around the y - axis

5.6 - Required Practice

#1. The number of people who've enrolled in an adult education class over the 40 day enrollment period is given by $f(t) = \frac{1}{40}t^2 + \frac{1}{2}t \quad \text{where } t \text{ is in days and } f \text{ is the number of people.}$

Find the average number of people enrolled over the enrollment period $0 \le t \le 40$

#2. The number of people who've enrolled in an adult education class over the 40 day enrollment period is given by $f(t) = \frac{1}{40}t^2 + \frac{1}{2}t \quad \text{where } t \text{ is in days and } f \text{ is the number of people.}$

Find the average <u>rate of change</u> in the number of people enrolled over the enrollment period $0 \le t \le 40$

#3. Find the average value of $f(x) = x^3 - 3x^2$ over the interval [1,4]

#4. Find the average rate of change of $f(x) = x^3 - 3x^2$ over the interval [1,4]

#5. An object's temperature in °C is changing over time and given by the function

$$T(t) = 25 + \frac{1}{10}t^2 + \cos(0.6t)$$
 for $0 \le t \le 20$

where T is in ${}^{\circ}$ C and t is in hours.

- a) What is the average temperature of the object over $0 \le t \le 20$?
- b) What is the average rate of change of the object's temperature over $0 \le t \le 20$?

Find a) the average value of the function over the interval and

b) the average rate of change of the function over the interval

For this homework evaluate the integrals by hand

#6.
$$y = x^2 + 3x - 2$$
 $-1 \le x \le 5$

$$-1 \le x \le 5$$

#7.
$$y = 7x^3 + \sin(x)$$

$$0 \le x \le 1$$