AP Calculus BC – Unit 7 Extra Practice

7.1 – Extra Practice

Write the first 5 terms of the sequence:

#8a.
$$a_n = \sin\left(\frac{n\pi}{2}\right)$$
 #9b. $a_n = 2 + \frac{2}{n} - \frac{1}{n^2}$

#10b. Write the next two apparent terms

#11b. Simplify:	(3n+2)!
	(3n-1)!

of the sequence: 5, 10, 20, 40, ...

#12b. Find the limit (if possible) of the sequence: $a_n = \frac{2n}{\sqrt{n^2 + 1}}$

Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit:

#13b.
$$a_n = 8 + \frac{5}{n}$$
 #14b. $a_n = \frac{1 + (-1)^n}{n^2}$

#15b.
$$a_n = \frac{(n-2)!}{n!}$$
 #16b. $a_n = \cos\left(\frac{\pi n}{n^2}\right)$

#17b. Determine whether the sequence is monotonic and whether it is bounded.

#18b. Find an expression for the nth term:

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \dots$$

$$a_n = \frac{3n}{n+2}$$

7.2 – Extra Practice

Find the sequence of partial sums S_1 , S_2 , S_3 , and S_4 .

#11b.
$$\frac{1}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \frac{3}{4 \cdot 5} + \frac{4}{5 \cdot 6} + \frac{5}{6 \cdot 7} + \dots$$

#12b.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots$$

Verify that the infinite series diverges:

#13b.
$$\sum_{n=0}^{\infty} 4(-1.05)^n$$

#14b.
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$$

Verify that the infinite series converges:

#15b.
$$\sum_{n=0}^{\infty} 2\left(-\frac{1}{2}\right)^n$$

#16b.
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

#17b. Find the sum of the convergent series

#18b. Write the repeating decimal as a geometric And write the sum of the series as a fraction:

 $0.\overline{49}$

Determine if the series is convergent or divergent:

#19b.
$$\sum_{n=0}^{\infty} (1.075)^n$$

#20b.
$$\sum_{n=1}^{\infty} \ln\left(\frac{1}{n}\right)$$

#21b.
$$\sum_{n=1}^{\infty} \left(1 + \frac{k}{n}\right)^n$$

7.3 – Extra Practice

Confirm that the integral test applies, then use it to determine if the series converges or diverges.

#9b.
$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

Confirm that the integral test applies, then use it to determine if the series converges or diverges.

#11b.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln\left(n\right)}}$$

#12b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$$

Explain why the integral test does not apply to the series.

#13b.
$$\sum_{n=1}^{\infty} e^{-n} \cos(n)$$
 #14b. $\sum_{n=1}^{\infty} \left(\frac{\sin(n)}{n}\right)^2$

Use the p-series test to determine the convergence or divergence of the series.

#15b.
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$
 #16b. $\sum_{n=1}^{\infty} \frac{1}{n^5}$ #17b. $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \dots$

7.4 – Extra Practice

Use the Direct Comparison Test to determine the convergence or divergence of the series.

#10b.
$$\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2}$$

#11b.
$$\sum_{n=1}^{\infty} \frac{4^n}{5^n + 3}$$

#12b.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

Use the Limit Comparison Test to determine the convergence or divergence of the series.

#13b.
$$\sum_{n=1}^{\infty} \frac{5}{4^n + 1}$$

#14b.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+1}}$$

#15b.
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)2^{n-1}}$$

7.5 – Extra Practice

#6b.
$$\sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{3n+2}$$

#7b.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{e^n}$$

#8b.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\ln(n+1)}$$

#9b.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 5}$$

#10b.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^2+4}$$

#11b.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{\ln(n+1)}{n+1}$$

#12b.
$$\sum_{n=1}^{\infty} \frac{1}{n} \cos(n\pi)$$

#13b.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!}$$

#14b.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}}{\sqrt[3]{n}}$$

#15b.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

#15c.
$$\sum_{n=1}^{\infty} \frac{6}{n(n+3)}$$

7.6 – Extra Practice

Determine whether the series converges absolutely, conditionally, or diverges.

#4b.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n!}$$

#5b.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+4}}$$

#6b.
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln(n)}$$

#7b.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n+1)!}$$

7.7 – Extra Practice

Simplify the expression fully.

#6b.
$$\frac{(n+1)4^n}{n4^{n+1}}$$
 #7b. $\frac{(2k-2)!}{(2k)!}$

Use the Ratio Test to determine the convergence or divergence of the series.

#8b.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 #9b. $\sum_{n=1}^{\infty} \frac{6^n}{n!}$

#11b.
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(3n)!}$$

Use the Ratio Test to determine the convergence or divergence of the series.

#12b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{n2^n}$$
 #13b. $\sum_{n=0}^{\infty} \frac{6^n}{(n+1)^n}$

Use the Root Test to determine the convergence or divergence of the series.

#14b.
$$\sum_{n=1}^{\infty} \left(\frac{2n}{n+1}\right)^n$$
 #15b. $\sum_{n=1}^{\infty} \left(-\frac{3n}{2n+1}\right)^n$

#17b.
$$\sum_{n=1}^{\infty} \left(\frac{n}{500}\right)^n$$

7.8 – Extra Practice

Approximate the sum of the series using the first 6 terms.

#4b.
$$\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{\ln(n+1)}$$
 #5b. $\sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{3^n}$

How many terms are required to approximate the series with an error of less than 0.001?

#6b.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n^3 - 1}$$