8.1 – Required Practice

#1.
$$x^2 - 6x - 8y - 7 = 0$$

#2.
$$4x - y^2 - 2y - 9 = 0$$

#3.
$$9x^2 + 4y^2 - 36x + 8y + 4 = 0$$

#4.
$$2x^2 + 2y^2 + 12x - 16y + 40 = 0$$

#5.
$$16x^2 - 4y^2 + 32x + 16y - 64 = 0$$

#6.
$$9x^2 - 4y^2 - 18x - 16y + 29 = 0$$

Identify the type of each conic section.

#7.
$$x^2 + y^2 - 6x - 8y + 24 = 0$$

#8.
$$2y^2 + x - 12y + 20 = 0$$

#9.
$$x^2 + y^2 + 8y + 10 = 0$$

#10.
$$4x^2 - 9y^2 + 54y - 177 = 0$$

#11.
$$49x^2 + y^2 - 294x + 392 = 0$$

#12.
$$9x^2 + 49y^2 + 98y - 392 = 0$$

Identify the center and radius of each circle.

#13.
$$(x+8)^2 + (y-11)^2 = 25$$

#14.
$$(x+8)^2 + (y+2)^2 = 67$$

Sketch the conic section already in standard form.

#15.
$$\frac{(x+1)^2}{4} + \frac{(y+5)^2}{81} = 1$$

#16.
$$\frac{(x-6)^2}{100} - \frac{(y-3)^2}{25} = 1$$

#17.
$$\frac{(y+2)^2}{9} - \frac{(x-4)^2}{25} = 1$$

#18.
$$(x-3)^2 = 4(y+2)$$

Convert the equation to standard form and sketch.

#19.
$$x^2 + y^2 - 8x + 6y + 24 = 0$$

#20.
$$x^2 - 16y^2 - 2x + 128y - 271 = 0$$

#21.
$$x^2 + 16y^2 - 2x - 192y + 561 = 0$$

#22.
$$-x^2 + 6x + y - 10 = 0$$

8.2 – Required Practice

#1. Sketch the curve given by the parametric equations

$$\begin{cases} x = t^2 - 4 \\ y = \frac{1}{2}t \end{cases}$$

$$-2 \le t \le 3$$

#2.
$$\begin{cases} x = t^2 - 4 \\ y = \frac{1}{2}t \end{cases}$$

#3.
$$\begin{cases} x = 2t \\ y = 4t + 3 \end{cases}$$

#4.
$$\begin{cases} x = 1 + 2\cos t \\ y = -2 + 3\sin t \end{cases}$$

$$\begin{cases} x = \cos \theta \\ y = 2\sin(2\theta) \end{cases}$$

#6. Graph the plane curve and write the corresponding rectangular equation:
$$\begin{cases} x = -2 + 3\cos\theta \\ y = -5 + 3\sin(\theta) \end{cases}$$

$$\begin{cases} x = -2 + 3\cos\theta \\ y = -5 + 3\sin(\theta) \end{cases}$$

#7	Granh	tho	nlano	CURVO	and	write	tho	corresponding	roctangular	oquation:
#1.	Giapii	uie	plane	curve	allu	wille	uie	corresponding	rectariquiai	equation.

$$\begin{cases} x = \cos^3 t \\ v = \sin^3 t \end{cases}$$

#8. Find two different sets of parametric equations for $y = x^3$

Sketch the curve of the parametric equation by either converting the equation to rectangular form, or using a table, then use your calculator to verify your sketch.

#9.
$$x = 2t - 3$$
, $y = 3t + 1$

#10.
$$x=t+1$$
, $y=t^2$

#11.
$$x=t-3$$
, $y=\frac{t}{t-3}$

Sketch the curve of the parametric equation by either converting the equation to rectangular form, or using a table, then use your calculator to verify your sketch.

#12.
$$x = 6\sin(\theta)$$
, $y = 4\cos(2\theta)$

#13.
$$x = 4 + 2\cos(\theta)$$
, $y = -1 + \sin(\theta)$

8.3 day 1 – Required Practice

#1. A baseball is hit by a bat its trajectory is given by: $\begin{cases} x = t \\ y = 80 - \frac{77}{2500}(t - 50)^2 \end{cases}$

What is the angle of elevation of the path of the ball at t = 0, t = 30, and t = 60?

Find $\frac{dy}{dx}$ for the given parametric equations.

#2.
$$x = t^2$$
, $y = 7 - 6t$

#3.
$$x = \sin^2(\theta)$$
, $y = \cos^2(\theta)$

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ and find the slope and concavity (if possible) at the given value of the parameter.

#4.
$$x = 4t$$
, $y = 3t - 2$ (at $t = 3$)

#5.
$$x = 4\cos(\theta)$$
, $y = 4\sin(\theta)$ $\left(at \ t = \frac{\pi}{4}\right)$

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ and find the slope and concavity (if possible) at the given value of the parameter.

#6.
$$x = \sqrt{t}$$
, $y = \sqrt{t-1}$ (at $t = 2$)

Find the equations of the tangent lines at the point where the curve crosses itself.

#7.
$$x = 2\sin(2t)$$
, $y = 3\sin(t)$

Find all points (if any) of horizontal or vertical tangency to the curve.

#8.
$$x = 4 - t$$
, $y = t^2$

Find all points (if any) of horizontal or vertical tangency to the curve.

#9.
$$x = 3\cos(\theta)$$
, $y = 3\sin(\theta)$

Determine the open t-intervals on which the curve is concave up or concave down.

#10.
$$x = 2t + \ln(t)$$
, $y = 2t - \ln(t)$

8.3 day 2 – Required Practice

#1. Find the arc length of the curve on the given interval.

$$x = 6t^2$$
, $y = 2t^3$ $1 \le t \le 4$

Find the arc length of the curve on the given interval.

#2.
$$x = 3t + 5$$
, $y = 7 - 2t$ $\left(-1 \le t \le 3\right)$

#3.
$$x = e^{-t} \cos(t)$$
, $y = e^{-t} \sin(t)$ $\left(0 \le t \le \frac{\pi}{2}\right)$

#4. An AP Exam Free-Response Question:

At time $t \geq 0$, the position of the particle moving along a curve in the xy-plane is $\left(x(t),y(t)\right)$, where

$$\frac{dx}{dt} = 2t - 5\cos(t)$$
 and $\frac{dy}{dt} = -\sin(t)$. At time $t = 4$, the particle is at the point $(-1,3)$.

- (a) Write an equation for the tangent line to the path of the particle at time t = 4.
- (b) Find the time *t* when the tangent line to the path of the particle is vertical. Is the direction of the motion of the particle up or down at that moment? Explain your reasoning.
- (c) Find the y-coordinate of the position of the particle at time t=0.
- (d) Find the total distance traveled by the particle on the interval $0 \le t \le 4$.

Unit 8 Part 1 Test Review

Identify the conic, put the equation in standard form, and sketch:

#1.
$$x^2 - 6x - 8y - 7 = 0$$

#2.
$$y^2 + 16x + 2y - 63 = 0$$

#3.
$$3x^2 + 3y^2 + 12x + 18y + 12 = 0$$

#4.
$$2x^2 + 2y^2 - 16x + 4y + 24 = 0$$

Identify the conic, put the equation in standard form, and sketch:

#5.
$$9x^2 + 4y^2 + 18x - 16y - 11 = 0$$

#6.
$$2x^2 + 50y^2 - 20x + 300y + 450 = 0$$

#7.
$$4x^2 - 9y^2 + 16x + 54y - 101 = 0$$

#8.
$$9x^2 - 25y^2 - 54x - 50y + 281 = 0$$

Convert the equation to rectangular form and sketch the curve (include direction arrows):

#9.
$$x=2t$$
, $y=t^2+3$

$$#10. \quad x = 3\cos t, \quad y = 5\sin t$$

#11.
$$x = 2 - 3\cos\theta$$
, $y = -3 + 3\sin\theta$

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the curve given by the parametric equations set, then find the slope and concavity at the given parameter value:

#12.
$$x=4t^3+t^2-2$$
, $y=t^2-1$ at $t=2$

#13.
$$x = \ln(t)$$
, $y = \frac{1}{t^2}$ at $t = 1$

Find the arc length of the curve on the given interval:

#14.
$$x = 3\cos^2 t$$
, $y = e^{2t}$ $1 \le t \le 4$

#15.
$$x = \ln(t^2)$$
, $y = t^3 + 2$ $1 \le t \le 2$

Find an equation of the tangent line to the curve at the given value of the parameter:

#16.
$$x = 2\cos(t)$$
, $y = 3\sin(t)$ at $t = \frac{\pi}{6}$

#17.
$$x = t^3 + 4t^2$$
, $y = 3t^{\frac{4}{3}}$ at $t = \frac{1}{8}$

