AP Calc BC, Lesson ‘Notes, Unit 8: Parametric Equations, Polar Coordinates, Vectors

Unit 8-1: Conic Sections
~ A conic section is a 2D curve which is the intersection of a plane wnth a cone...

..and all have equations of the general form:

A + By +Cy* +Dx+ Ey+F =0
If the xy term Is present, the conic section is not aligned with the x-y axes (is rotated)
We will not consider this case (it is solved with a rotational coordinate transformation)
- email me If you want a link to more detailed info about this case.

/\ . -
' Quickly recognizing which conic section from the equation
X - 6x~8y =T =0 One squared term = parabola
9’ +4y* —36x+8y+4=0 Two squared terms, same sign = ellipse

9x? —4y* ~18%—~16y+29=0 Two squared terms, different signs = hyperbola
4x—3* 2y -9=0 One squared term = parabola
16x* —4y* +32x+16y~64=0 Two squared terms, different signs = hyperbola

257 +2y% +12x-16y +40=0 - Two squared terms, same sign =-ellipse, but ccaeff‘ cients of
o squared terms are same 100, SO circle



Parabolas

falus 1
/\
direociris
(x~2)" =4(y~1) AR
| (r-2)° =2(x~1)
Standard form: (x=k) =4p(p=~k) p =distance from vertex to focus 22 (ke y=x2)
(y~k) =4p(x~Hh) and from vertex to directrix
Geomelrically, all poinis on a parabola are ~.which makes this sﬁape perfect for focusing energy (antenna
squidistant from focus and directrix... tishes, flashlights, oic.)
directrix o v
ali glemonts of a wavelront anive at the
: same time at the foous
Parabola examples (x—h)Y =4p(y~k)  p=distance from vertex to focus
(y=k) =4p(x—h) and firom vertex to directrix

_ v " 2 v

#1. x> —6x—8y—-7=0 #2 4x—y*—-2y-9=0
- 2 b3 . ) 12— : —

(x-3)*= 8y ++4 JErey = T

Ce=3) =8y ¢ 2D Cy2Hey HL) =19 +L
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mijor axls
i g prtex: (1, 1}

o

Ellipses
P i3 (1, 2445} )
foons: {} anf§ TS, 2)
P ;
sreetter (1, -2} . wiafor anjs
i verlex: (-2, ‘? snex 4,-%)

ﬁicu& {I »»»»» 2 Jg)

jotox: (4, -5 S
TN ex ) (xm],f%(y+22_}
o 4

(= ~-‘l) (,MZ -1
bigger denominetor = longer direction 4 G
Standard form: (Y e . y cocantricity s
X-hf Ayp-k) x-h -l LAt A
P =dt b v e L ¢
i i e=l gl
o= distance from center (o foci verticud major axis knriganml mafor axiy higher ¢ = more ovat
In astronomical orbits, the object follows an eliptical path arsund the

‘Geometrically, the sum of the distances from a point
on an ellipse to sach focus is constant: chject belng orbited which Is at a focus (although the ellipse s usually
i close to Clrcuiar): ety

Circles Circles are special cases of ellipses where a = b;

x—hY y-k ¥
.(.mz{,),.,+.(,,,‘?2m=;

(x=B) +(p—k) = &5 »*

(xwi)z»»(y»hZ)z =9

Standard form: (x—h) +(y—t) =r*

E“Epsei’ci"ﬁe examptes (x“h)! @(y “,k)z =} (x»fah)g 4 (yuzka z] & =gt b Joity s g = [
i " b 4 ¢ = distance from center 10 foct secepiricity =& =
horizontal major axis  vertical major axis ‘

#4. 26 +29° +12x-16y +40=0

#3. 9x* +4y* -36x+8y+4=0
9 b>- ‘fxw)»‘*‘f*zﬁdv) = g  2bmbed) BT ) w2 & 122
e e
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fransverse axis
I »

Hyperbolas

-, ar”

asymptot

vastiex: &2
g fransverse axls ki) o 0
soas: (15 2 {13, 0.2}
g .= T S,
. €12
o G- (2 G- (x=2)
opens in direction of positive term a 9 4 9
Standard form; kY {pk) (y 1V (x4+2F
R e O
L S =d b i b . 4 9
o =distance from center to_foci horizontal Wnsvemgmw vertical tmmwmea;cis
asymptotest {y—#)= :t:;{x ~#} asymptotes s {y- k)= :k;(x i}

Geometrically, the difference of the distances from a ..his is useful in location detection systems. If two points receive a signal
point on a hyperbola to each focus is constant... and the delay between the times received is known, 8 hyperbola traces out
; " the locus of all possible points where the emitling object might be.

if yous have 4 2nd set of two
detectors, the location is at the
intersection of the two hyperbolas
from the two pairs of detectors.

Hyperbola examples

Fuat b M“.Wﬂ MMBJ;%X@I
4 9

&= distance from center o foci @ . '
horizontal transverse axis  verfical transverse axis

Y #5. 1657 -4y’ 4320416y ~64=0 #6. 9x” -4y’ -18x-16y+29=0
uhrenr 1 (7oed - etk £ b -mal) —t(y*Hly L) =2t HL 2
9 CX’!)Z fl%}'ZyJ/?/)Z;'}L

lpiny? gy =3t Corer (17D

Gy — e -
g b/

asymptotes: (y~k)s= iw‘b;(xw hYy

z"-v-'"
(x> =ly-D"=¢ Lo
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o {xwhf =Aply-k)

=k} = dplx—h)

ke y= "
y* ‘ther one’

po= dist, vertex 1o focus

 and dist. vertex to directrix

Hypariola

{x~aY ey =}
‘o F

b

a s always bigger,
& under berm of mejor axis

& =d b e

a = dist, conter 1o verbex
¢ = dist, verder 1o focus

b = dist. center i point b = dist. 1o ‘other side of box’

on minor axis )
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Unit 8-2: Parametric Equations and Plane Curves

We know how to find a position equation from acceleration if we have motion in 1 dimension...
a(t)=-9.8
v(t)=[a() dt=[(-9.8) dt=-9.81+v,
x(t)= fv(t_) dt = j'(w9.82'+ v, ) dt =-4.91" + vt + x,

X

..but what if we wanted to model an object launched so that it follows a 2 dimensional path?

‘ : rice At
ﬁf {v ;
4
We can find a parabola which matches this... BTk o
Vertex: (40, 100) fedd i
(x—40)" =4p(y—100) N

Now make sure it goes through (0,0):

((0)-40F =4p{(0)-100) e A LEE

(~40)’ = 4p(~100)

"mj‘m” and we can use a calculator graph to verify:

(x—40)" =~16{y~100)

~16y +1600= x* ~80x+1600
- =16y =x" ~80x

P2
F e X e 5K
T

..but we don't have a good sense of where the object is at time t



Parametric Equations

This motion is in 2D, x and y, and both of these are varying with time, £,

We can instead represent this curve using separate equations for x and y, i
each written as functions of £. These are called parametric equations: ff

ﬁf'

¥

in this particular case, gravity is acting in the y-direction only. Once launched, the
object continues fo move steadily in the x direction. This suggests that we can just
make the equation for x: b li
«and we can now substitute this expression for xinto y to get the

paramelric equation for y:

We now call this path the Plane Curve, € with parametric equations:

S R
: 6:& Sx et
y =2t -5() 1
16 ' y it 5¢
16
. _ Xumt
We can now plug in any value of { and find the x,y location of the object at the time: 1
L e {2 o S
First, it is helpful to know what range of values f can take fo describe the ,y 16
full object path, The object starts at (0,0} and ends at (80,0), where y = 0
e s
71 % 10<£<80 L t=40
f("";g*MS] =0 a plane curve must always o
. : indicate direction as parameter - fsa g % o R
40, =t =50 increases positively with armws,\' R
el -
1=80 ¢4
New we can rake a table with various values for ¢ and find matching X,y Nl Xils
{or just use a calculator's table features): Bkl f *
‘ e il
=l =80

In the next section, we will use derivatives and integrals to find things like how fast an object’s height is changing
at a particular time, or the length of the arc the object travels over a fime range {we can do this now even though
the path is 2D because we have a single parameter variable to integrate over or differentiate with respect to).

Sketching plane curves from parametric equations - manually and using a calculator
This idea applies to any curve, hot just physics curves. )
. . b Or if we are allowad to use calualators, we canuse the
#1. Sketch the curve given by the parametric equations caleulator's ‘parametric’ graphing mode:
x4
2

-2Lt<3
We could make a table and try various £ values:

BER R
2 F 612
4§33 -w
0of-4 G
11-3 1/2
210 1
3




Eliminating the Parameter (converting from parametric to rectangular equations)

Ancther way which is sometimes helpful for graphing parametric equations is to eliminate the parameterto
convert back fo rectangular equations to see if it matches a graph shape you are familiar with.

#2. Ix=1" -4

Y=y

t=2y
x=(2y) ~4
x+4=4y"

(7-0) =5(x+4)

..i$ & parabola with vertex {(-4,0)

opening to the right:

H3. [x=2t
yu=df43

y=2x+3

.18 a line:

Range of Parameter, Limits of x and y

Graphing by eliminating the parameter may be quicker, but you don't have direction information or info about the
Himits of the parameter without plugging in a few values:

xe=]4 2co8s
ye-Z4+33int

we knowsin® ¢ +cos® ==

x~% y+2
COSE e, G 59 Fenl
2’ 3

y+2Y [(x-1¥
RALES IR Sty |
(53 +(5)

oe2f G-1F
9 4

...I$ an ellipse with center (1,-2):
- . 8

Range of Parameter:
(to go around once)

Limits of x and y:

#4. {x»—l‘i«Zcost

y =24 3ging

we know sin® £+ cos® 21

-1 y+2
Cost =, sinpmio
2 ET

(2)-(53
e N a2 Y

9 4
...is an ellipse with center (1,-2);

{we reaily shouldn't call these 'domain’ and

‘range' because this is not a function}



Parametrizations are not unique

If we are given a rectangular equation, coming up with a set of parametric equations using a parameter is called
parametrizing the curve, Parametrizations are not unigue: there are often many ways fo parametrize a given

Curve,

The most common way o parametrize is
to just make the independant variable the
paramefer:

x=F
{y =In ((2t+3)’)

y= hx((zx +3)z)

But we could do this instead:
‘ =243
t3
X T st
2
=3
2

y= ln(tz)

X

If you change parametrization, the range of the parameter also changes to cover a specified
part of the curve. Here are graphs of the above parametrizations for ~10<:<10

The Two Most Common Parametrizations
If you can solve an equation for ong of
the variables, the most common way to

parametrize is to use the independent
variable as the parameter:

y=((2x+3)’)

{ymm((zms)z)

Examples

#5, Graph the plane curve and write the corresponding rectangular equation:

& 18 dﬁ&?xns;mi—) Justuse a L ble i

I you have cos, sin, try squaring and
using the Pythagorean identity:

x=1420080
y=-243sin 8
we knowsin® @+ co5* 8 =1

wsﬁmfzﬁl, smad-iﬁ

3
3
(y+2] N
3

(-
2

9 4

{you can use any lefter or
symbol for the parameter)

X = c0s0
 y =2sin(26)

» +rig Whnbds th@?j ~ Csu fodeo s

y = Y S
y2= b S U8 O

go= 16(1-ws ) %

{
7

& X ~

O t o
f H

W a/—,o

= (24 o) “—‘V
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Examples

#6. Graph the plane curve and write the corresponding rectangular equation:

{x =2 4+ 3¢086
Slve \Lq'—» Cad 9», Shg- aned SGene. ]

=~5+3sin(6)
e

et = ) >

(57057

(901 o |
q g

W +l )= j

Civeda.

1
. . ) ” - oy
#7. Graph the plane curve and write the corresponding rectangular equation: {x o8

Use bl orcaleads— | p=gin®t
= ¥ 3 | J s TE=X J Ca)’é'})(j/j’
o \ o 5.3 é‘/j/ s =Y o
| a5 | aswr s leas T = |

%o | x (45 (<"B)=]

3| - 3| avEr

#8. Find MC;# different sets of parametric éq_uatiarzs for y= x°
X =t X = /-Z
y=+’ LS

BITRREWISS s
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Unit 8-3: Parametric Equations and Calculus .

Derivative of a parametric function still means *slope"

Since we can ultimately express a curve given in parametric form on an x-y plane, the
derivative dy/dx still means siope of the tangent line to the curve at a point, but the way we
compute it is slightly different and relies on the Chain Rule:

...and you can repeat for higher derivatives...

i%@;i

Py dildx

Fra [g!x)
ot

. 2
Graph the plane curve and find and interpret the meaning of %,%,%,% att=—4,¢=1 for {xm £ +5t+4
‘ = 4t
af f =t at f=1 Y
(0,~16) {10,4)
. 245 ax . & =7 How fast the point is increasing in X per unit
dt dr dt oftime, &
@ 4 @ - & How fast the point is increasing in ¥ per unit
4 wxd
dt dt dt of time, &
d \di) A b A @ 4 How fast the point is Increasing in v per unitof x,
’ tE X e siope of the IBogent e a |sp0m!.
d (&) 2+5 a3 P the slope of the tangent line at this point
dt (decreasing}  (increasing) .
afay]  GE-()
d'y "2&[2&“1 (2e+5) -8
@y 245 sy

. oo . is point.
%;%ﬂ ~0.296 %;ﬂg: 0023 The concavity of the curve at this point

{concave up} {concave down)

We could also write equations for the tangent fines at these points: w5044
at ¢ =l att=1 y=4
(0,~16) (10,4)
2) |
.i‘l_}i - dt ;_ﬁ_ fél’m s dy 4 How fast the point is increasing in y per unit of %,
dc (ﬁ) A+S  dx 3 & 7 the slope of the tangent line at this point.
a Tangent fine equations

(y+16)w—~vg~(xm9) (y-—st)m%(xmm}
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Need to be careful, graphs may loop and cross themselves

Graph the curve {" =2~-zsinf _3<r<3 and find the parameters values where the graph crosses the y-axis.

. Y=L oSt
Then write equations of tangent lines to the curve at these points.

Graph crosses the y-axis when x = 0, using calculator graph...
..this happens at 3 t values in the interval:

& rmmg«» e Y“*"g“
{0,2) (0,~1.1416) (6.2)
(2] e
%méjmzf:&t %“”% ‘5{“ %”‘%
022360 spaa16)=0(e-0) “9=5=0)
-T2 ym-1.1416 ym%mz

We may be asked to find horizontal or vertical tangéms

Some problems ask to find horizontal or vertical

tangents...this mean on the x-y graph, so horizontal tangents
occur when:

&
dx

Vertical tangents would occur when this derivative is undefined
(typically, when the denominator goes to zero), Forthe
derivative previously computed...

dy _ msint
dc  2—mcost

{

x = 24 — 7 8ind
Y =2 OB

would be undefined when 2~—zcost=0, sslyed by graphing in calculator:

at 108807,

1 = 9.8807




A real-world example...

#1. A baseball is hit by a bat its trajectory is given by.

What is the angle of elevation of the path of the ball at t =

We can graph this path:  #}15 1oz

{x t
80——11 (1
r= zseo( s0)

0, t= 30, and t = 607

The angle of elevation can be found using
a tangent line at a given time.  G=tan™ (m)

e ¢ % ¢ =tan"'(m) {use degrees)

'j gt o 5
"Siope” atfime t. 0 2.08 72.013 o
FRN— . 30 1.232 50.934
o (5) 0 54 o) go | -0616 | -31.633°

& (ﬁ) ' i =0 : )

e
A baseball is hit by a bat its trajectory is ‘given by: {x =¢
y= 30“5“5“55(‘ 50)"

What do the derivatives ﬁ,ﬁ mean?
de’ dt

If we campute these att= 0,1 30, and t = 80...

g0 {230 80 '
dx & & dx
Pty e 25 ] e 222 oo 28
| == ~=] !
dy 154 _ dy & 11 Yo o616
= (r 50) =308 -=1.232 61,

How fast the ball's height is
 changing per unit time,

How Tast the ball is moving

downrange per unit fime.




We can now derive an equation for iangth of an arc along a 2D path

(day 2)

We have an equation for finding arc length using a derivative if a curve is expressed with y as a function of x:

are length = ?Jl«k{f’(x)]z dx

441

But if we use the expression for dy/dx for a parametrically expressed curve 1)
2
, ¢ (aydt)
-.then: arclmgthmj 1+ W dx
A\ | (%)

%))
‘ %EJ(‘% w))%
arc Iengfh“.f [ (%‘)2 +(a%’)2) -

The difference between these is which variable we are ‘integrating over’:

arclength = fi+ 7 d arc length = | J(%t)z *(dy e#)!g;

"

{ (maybe time)
With the original formula, we are With the new formula, we are moving
moving along the x-axis and integrating glong the Qarameter {which might be
little sections of X (dx), and the something fike time) a small amount dt
integrand converts the smali dx into a and the integrand converts the smali dt

piece of arc iength. into a plece of arc length.




We can now derive an equation for length of an arc along a 2D path
This hew expression has two advantages over the previous version of arc length:

N arc length'= j}/l +¢[ S(x) ® dx arclength= 31 /j(%t)z 4~(%)2 dr

i 1) We can use it to find arc length for
. curves which are not functions,

Eh bid e it Bseenss:

2) In Calc 3 we can easily extend this
to find arc length of curves in 3D
space;

N CAR VARCAR

An arc length example...
#1. Find the arc length of the curve on the given interval.

x=60, y=2¢6 1<¢<4

R %%;l%« e‘% AR
i(;;vt)&yfh - fyﬁgzt)’l.*,‘ée{)‘z d& = /S’é( 25 (mvf’ﬁ 7)
b”y’gw'. | jqﬁw 1Lt o
] B
(' [HE 6D at
)
(" [t [1+er &
! ’ q =€ e
! S% 6t/ T oAt . = 2ol
; tott—=2An
jz” . M‘(z %J "
5 Tk
- 7 M i




Unit 84: Polar Coordinates and Graphs

Definition of Polar Coordinates

The coordinate system we've been using to graph points and equation curves is referred to as the
Cartesian or rectangular coordinate system. But there is another way to locate points on the
x-y plane that is sometimes advantageous called the polar coordinate system,

instead of defining position distances in the x and y direction from axes, we define position
using distance from the origin in a specified direction:

Converting...
rectanguiarfo polar  polarto rectangular

[ 4y x=rcosf

y=rsinfd

P oo

tan@=2
x

The angle is specified in standard trigonometric
position...0 along the positive x-axis and increasing
positively counter-clockwise.

We can locate a point in the plane two ways, and can convert between methods:

%y S84 Xy v, B R ‘ Y
(3,4)%)(6,0.9273) ({},»»»3) @(3‘ %) (4, 5%) M‘W,(ﬁ..‘z.\féﬂ, 2)
B g NNy r T oA 3 e reos0=dess(5%) = 4(W\§ afs

! 3 .
m@miwafwmd ymrsind= 4@1(5%}»:4(l);,2
#mgﬁ- 2

2

A A
3-% 5 ﬁ 4 | 5%
o X X
d E 23

Be caréful about angles that arctan provides...
The arctan function can only provide a single angle as output and it is always between ~Zsos%
but this may not match where the point is on the sketeh:

Example: Convert to polar coordinates (—~2J§, 2)

P «sz +y* M.‘;Zz »b(j&\/:g)l w

tand = .va 2
x ~2J3

emm”*(wa%)m&szss

..gives an angle in quadrant IV

| 2.618

: X
~4).5236

To get the correct angle, we need to add pit ~0.5236+7 =2.618



You can use tables or calculator 'polar mode’ to graph

#1. Sketch r=4cosé ; |
If you can use a calculator, there is a polar mode:

¥ = 4rcosd
24y =dy
(x3+4x)+ y=0
(x-2) +¥* =16

But you could also plug in angles to get radii:

wﬁwﬂ www’w;m
o | 40)=4
x V2
ER Y
3% 2
»-fw 4(*»*{*)# -8
® d(et)mmdb

(negative radii are graphed in opposite direction)

Equations of curves can be written using either rectangular or polar coordinate

We can use our conversions to convert equations from one form to another. Sometimes, there are
‘tricks’ we need to use. Itis best to see how this work by considering examples.

Convert from rectangular to polar form and sketch:

#2. 5 +y* =16 #3. x> —3* =9

2= 1é Ueeos ) (S inw) t=4
oS T — TS =

Y lcss % —S A

S
= _ ™
063y =Ssh%

~ ap;zy——s;ﬁef

|' oS ~SG
X _ 35:/ (Z\\ydﬂ*’f)

XY

\ /
¢ mmmx

e»\
f\, —

f(
(N o

//w.,_.,
‘e

\




Convert from rectangular to polar form and sketch:

#4. x> +y* —4x=0 | #5 x=5
N FZ—‘l (FOOJB’) =9 NLose =S~
s
=N Cosor)= O = =
Ceo) or r-Yeate = — S Secor

Cevlﬁm) lr}»,. Yaie- P
T ' Y

X byt
(1) ey ==
(x-2y +ly-oF=4 ' \

bt X

Lenr Y
(2

-z
C T/'u{e,

Convert from polar to rectangular form and sketch:
#7. r =8sind
rin'& By st
Xy =8y
Xi 4‘&1\:{ ‘?fj L g?),, - D -&f%é

N ( y ) = ok (99
o= ¥

#B, r=>2

T . ¢




Convert from polar to rectangular form and sketch:

A

S
#8. 6= |
A 6 #10. r =cotoscd
bt N
ﬁﬂ??ﬁ’fé 6 ) F}%«L
‘eft“e/ s'vtc%ﬂ—) — 2{ -4 Se SHE

i | S & = @ﬁ@” ::.,ggév‘@‘

%(:%1_3 “‘% rsine ol ¢
N |
g =X
e .
X

| N il

N
Sometimes the shapes get very complex, and some have names
Fe 4Sin'(59) pum 230088 Pe=24e2c080 » :4603(29)
N "rose”  "imagon" "cardioid" "lemniscate”

(microphone patterns)



Intersections of two curves in polar
Sometimes we need to know where intersections occur in polar coordinates. To find intersections, first always

| graph to see what is going on, then treat the two curves as a system and solve simultaneously.
.

Look also at the graph to see if the origin (0,0} is an intersection - because that co?responds tor=0it can oceur at
any angle and often does not arise as a solution from the system.

Examples...Find the intersection points of the curves:

#11, r=3(1+sin6)

r=3(1-sind)
3

#12. r=4siné
P2

N "
ro 30i4shyY - ; {r: Y< e

=z
5£l+smer) - ‘3“ M)

{sme =t
= P
R
| Wy, © A (xv)
& 20,7, 27 " AR oy
Lt mehM? r & (%) er;__"’f

- 3c +§m{v)> 3

DEEeES S waé%'x“ }’r

P - - ¢ =11 4
N=yes e = 35;}[0) =3 ‘j,rSMG‘/ Zs W(Z%) :‘

Lj - rSMﬁ’/}, /M/ ) =2

y : I
=0 ‘ m\\ vz ¢
— P | -
=2 . x P\ oo/ B
rf‘ 5(!f~sm w 2 g fww.;'z@aj(sf) z{; a)
| - )
9//” o = (s ..-wz‘;ah(ﬂ,) Z{ 2

¥ = Meoso= SesCry="3 ZZEE |
y =rsig=35mln =0 _

= Ay=. é“l% g

P §
§

Wl ¢

N




Unit 8-5: Polar derivatives, tangent lines, and arclength

‘Derivatives In polar and tangent lines

The equations to convert from polar to rectangular.  x=rcosé

p=psing
...are almost like parametric equations: they express x and y in terms of other variables (although in this

case in terms of two variables, » and &, not just one variable {. So we can pick one of these variables, ¢
and express rin terms of that, so that x and y are now in ferms of just one variable 4.

r=f{(0) x=f{(0)cosd
y=f(@)siné i
Now, x and y form parametric equations, so we can find the derivative with the Chain Rule, but this will now
require Product Rule as well:

%g %‘;"% = ﬁg)xz‘?)f;ﬂ{ffg) (as long as the denominator Is not zero)

dg
Horlzontal tangents occur when %wo which is when the numerator is zero, therefore E hen %w
dx

@ is undefined, which is when the denominator is zero, thereforejwhen -c}-é-m()

Vertical tangents occur when =

We can use this result to quickly locate the angles where horizontal or vertical tangents occur.



#1. Find the points of horizonial and vertical tangency to the polar curve » =4siné

r=\snv
R NloSH—
x={Ysne)castr

%‘g,; (45 Ysine) (@) Yeosiy)
- —qspth el
=Y (los%o —Sin%% D
’}ﬁ) ieafchs < oS = \—sin
g _ (1S —B%e )
de, .
—ql1—zsme)
ve o] AonygntS when %70
Yli—2spe)=>

Y= 27 o %‘):26;,2{22’) |
y=2f2 om(F)=2R"Z =2 =

ﬁ Lr =4 ‘-W(i'fz:) = iﬁ)

pum—

xoz ()P e
9= 2 s () ()T it
o= 5 (r=sm (EJ'TX;\(['—«%> =2
—_ g
e B
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Cluglic-tes (z,%) N
ard o= ;’5%' ﬂqfﬁz«{d é'-wl, 4
wertiel —lwg;mf;f 4+
. 6217‘\) (:’%@)

™

and find the equation of the tangent line at 6&%

hoizonk | éw)'w“ wha gﬁ,;a

)

Yz rsme |
a,{[q 5,”9) e =Y Mzé}'
{5‘1} - Jehe o =2

Zi

b=o c=zlshb)z0
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o= r=t5ulZ)="
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X:Q&S(E) v _09 y
y=TsulE) =4 -t

6 =7F rusm(By="1
xz*“f)“f(% =2 |
Y= (1) ) =) =Y
@uplicede)

‘ DS iZort "‘“Ajwﬁi( L 47
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Arc Length in Polar Coordinates o s
Starting with the arc length formula for parametrized fum:tians arc length = j IR

and If we want to use ¢ as the parameter, we have »= f(9)
| x=rcosf = f(f)cosd
y=rsin@= f(6)sing

.then: arclength= j\/ ;5’9 ) de

we can compute the two derivatives using the Product Rule:

L = 7 (6)(~sin6)+0s6(1'(8)) L — 1(6)(o0s6)+sino(1(9))

the inside of the radical in the integral is then:
' ~ So arc length is:

(%)2(%}2 arc length = j’ ¥+ "é' de
(%)

- (/(0)sino) reos0( (@) =
H{7(0)(cos0)+sino (1 (0))

=[ /()] sin®6-27(0) f(8)sinOcosf+[ '(8)] cos’

+[£(0)] cos*0+2£(8) f'(B)sinbcos+[ 1'(6)] sin®

= [f(@)] (sm @+ cos 6)—{-[_)"’(9)]; (sm 0+ cos® t‘})

=[r@T +[r@T

. (dr)"
= T ] e
. dp



Examples of arc length in polar

Finding arc length is then finding the portion of a single curve which you want to integrate over and defermining the start and end
angie values, One thing to be aware of it that some curves loop over themseives multiple fimes If the range of the parameter is large
ehough. .

#2. Find the arc length of the top #3. Find the arc length of the curve » = 2sin{36)
half of the cardicid » =2 - 2c0s8 : v ’

b/

b _

< }»‘-\/ ~A
Slotloieg hny== sty P 17
Y —ysing = (2 Zese) 02 = zsm(38)=°
ztfrer sShe=0 "{9"; o, 3’4"7,) o %63“") -0
veridy fceleatbe gophi so= 0, T T 7T

w B ..

o

de = 9% 5, > '
o= 25hY S Sugpess 3/,,/%/-41/’ i

T . us R 0 & Gl
acelesfn= S [z tesel® +(zsmuyt et
' é

RERY RSN

pevity wf onl enlrtor

.

i ﬁ:{‘;‘; '252{[5’@)15’3) =4 aal(3¢D

w
v forstt —/J 0 (z sm(%))zk{&ofw))zdb

or 2-Tiwse2
Cs =/ | B ’ 3, 341’
-@7&( i _ '
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Unit 8-6: Area in Polar Coordinates

Area of a Polar Region

We can use a definite integral to find the area of a polar region. To derive the formula, we start with somathmg

like a Riemann Sum for rectangular area...

except we will sum triangular segments...
y=f(x) oo
A= f irﬁmtgle

A= jﬂibh

The height of the rectangle is

yeb . . 7 9@3
A= .[ A just the radius at that point. A= J' (arclength)r
xm: "" rde
o - 3 bhlrdd s
A= I hw /0 ; A= f—r(r 4e)
xed r ama
Hwaly
A= j f(x)dx For @ in radians g “:"“ Ami f 36
- are =l
d{arc)=rd@

#1. Find the area in the inferior of » =3cos 8

Always graph first, then imagine coverihg’ this area with radial 'slivers’

. We can either integrate triangles from: &= ««% to 9«~%
or we can double the area integrated from #=0 to 8=

n{é%

A Z[‘-l?;ﬁ (3@;9)104?] z
S
= 517&‘?“;%- e w/ b= H—wi&”j



#2. Find the area in the inner loop of 7=1+2sin#

b4

i yéz‘d#

12 sny/‘/z X itﬁé:
she= = A=% | (lezsfds = 2535
I 20 = t_t_g: ' A

&

6 .
(v-eff@y w/ On(acfH') L ,

Area between two curves in polar
We can find the area between two curves by finding the area of the outer reglon and subtracting the inner region (similar
fo the 'top - bottom' case in rectangular area betwsen functions, in this case 'top’ means further from the origin).

Fotar ™ ,f(ﬁ) Vowsar mf(g)

& oo

2
Ahetwaen = Aper ‘“‘““:}z‘j(f '(9))2 o

- 1’ (4 % 2 {If you combine Infe one integral, make sure
Aperween = "2'.1' [(f (g)) --(g (‘9)) ] do you square each radius function separately)

You need to always sketch first so you can see where intersections occur which usually define start and end angles.
Also, be aware of the fact that in the middle of an area the 'outer’ and 'inner’ curves can switch,

\



, #3. Find the area Inside » =3sin@ | #4. Find the common interior area of

and outside »=1+singd r=2c086 and r=2sin8
N
\WheySePanS | . Fsihe = +sue Vilerreons: 7 coso-= Zser
sy ) ‘ Cosor=SU
She=—% o=T % b o="%
‘
) ¢ (n e come JW)
y e comve S
a Ae T
S A== /,zsmr)
o q
5 (Lrsue) de % e
(5 =4 S s deo + 2"{ cafe do
< e nz.( 1z
! Uy | 2
A%y (1sue- (1 v 2sigbsine) de c2 S /wﬁaﬂdkﬂ/[ 3 (1resCrih
i3
= s/ ; &
' s L 54/2%(.29)
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Unit 8-7: Vectors (properties and applications)

A vector Is a directed line segment, and is characterized by its length and direction. -

textbook indicates a vector by
making the letter bold (foo hard to

y ‘do by hand, so we add an arrow
Y above the letter) -
,'(x"’y“_) ‘ (’%:%) =y
is a point is a vector
X X

A Initial, terminal point, length, direction

A vector can start from any initial point, but if you place its initial point at the origin, length and
direction work the same way they do for polar coordinates:

m‘?m<x2 X3 Vs "”yl)

terminal point

v length: M —\3 1 4% =5
4 X direction:  g=tan™ (fi) =53.15°
(0,0) - 3

initial point

The length of the vector along each axis direction is called a
component. Each vector has two components:

y

-l
v e

compyV
(4

compyy

, ity

COMPyv
You can think of the components as being like the shadow of the
vector onthe x or y axis if you shined a flashlight on the vector.

This is called the projection of the vector onto
the x-axis or y-axis.

Converting between components and length, angle

y -
N vz <compx,compy> |
)/ =coml3y¢ Fl'm \/comp ? +comp } comp, = qcosf)
% | Ty . 24 P x
2 X com, -
coOmpyV é=tan"’ (——M&) comp,, = lvl sin@
comp,

=3 +2" =13 comp, =13 c0s33.7°

8= tan™ (%) =33.7°  comp, = V135in33.7°

N eos33.7



"\

Vector components from initial and terminal points

If a vector is defined by giving its initial and terminal points, you can find
the components by subtracting end-start for each component:

(4,6)
/ (4-1,6-2)=(3,4)

@ 2)

Vactor equality

Two vectors are considered 'equal’ or the same vector' or ‘equivalent' if

their magnitudes and directions are the same, regardless of where the
initial points are located:

54 > (4, 6)
(-2
(0.0
=(3-0.4-0)=(3.4)  W=(4-16-2)=(3,4)
V=w |

Vector Addition

Adding two vectors is the equivalent of moving along the combined
paths of both vectors to the new terminal point.

Geomelric . Algebraic
wlh
- b=(51)
a=4 o
) a+b a+b=(3+54+1)
(’0,0) X B"i"wb'm (8,5)

Placing one vector's tail fo the other's tip results in a new
terminal point for the addition vector

the 'triangle law'
Vector Addition is commutative

Reversing the order of the vectors being added gives the same result:

Geometric Algebraic
y B (8.5) - a=(3,4)
- b={(5,1)
o a+b={(3+54+1)
©0) x b+a=(5+31+4)

the ‘paraiieiogram law'
the sum is also the diagonal of the parallelogram



Multiplying a vector by a scalar

Muttiplying a vector by a scalar (number) multiplies ali components by that
value, and scales the size of the vector...

Yy
a={1,2)
> 3a=3(1,2)
3a=(3,6
| x (3.6)
(0,0)
...which changes its length, but not its direction.
Negative vectors
However, if the scalar is negative, it changes the direction 180%
y
a= <1,2>
~3a=-3(1,2)
- -
a - <1’2> —30 = <—3,_6>

...which changes its length, but not its 'direction’.

Vector Subtraction )
Subtracting a vector is equivalent to adding a vector multiplied by -1:

Geometric ) Algebraic

o subtraction is also geometrically equivalent to
combining vector 'tail-to-tail' (drawn from b to a)




Vector comp‘utationat examples

quivalent: #2. Find the magnitude of each vector and 3v - 2u
Sketch the original vectors and 3v - 2u

u=(3, 6)
3::(_5,4)
= [ 5ot = Vo= 3
E&?@ < Jza| = ‘37.385
3v - »
3 {575-22 —2L362
4,5«47 — 6,1V

255\

l%v"—u?] [a% 8% = f%?f = 25

bt

I oqp. e R




Applications of vectors

Things to know:
« If objects are not moving, then the sum of all force vectors = 0.
> H (horiz components) =0
>V (vert components)=0

« If objects are moving, then the overall motion is the sum of all individual motion vectors.

#3. A boat heads straight across a river at a speed of 4 mph, but the water in the river is flowing
a 2 mph (as in the figure). What is the resultant and direction of the boat?

S ' 52 mp!:,"
4 mph rosultant motion
A [ Notaniionsd
[Fl=¥ 2=27 TN=2 Buz0° (>
f ’/‘C‘*wj(‘?aﬂ / ‘(sM‘*o"‘P w = L 2¢or [a*) , 254 !
w = £z07

f? :>< OI q7 . w

(tiant, T =B+
7 =09, >+ 207

T 2 -

7 =<
-

P et

Lant= %

(ﬁ" 6&;‘[@5 = 43'([3300 }
-
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Unit 8-8: Vector-Valued Functions

We've know how to represent a plane curve using parametric equations...

x=f -4
1

=g

)
-25153
BERE, ...and we've defined how vectors work...
2]o]-2 y
KR N BT . i
olal] o (xmyo} =V
113 ) w2 is a vector
2o} 2

3]s fan X

We can put these ideas together to define Vector-Valued Functions

At each value of the parameter, t, we define a vector with
initial point a the origin and terminal point at the point on the
plane curve given by the parametric equations

7 (2)=(0,~2)
7(0)=(-4,0) T0)= <z -4 »4)

r(D={-3, ]
f ) /4} These are sometimes also called
r(3)= <5’ %) Vector Functions’ or 'Position Vectors

The domain of a vector-valued function is the allowed values of the parameter
t ¥ 4

2102
_ Alal e
=t obalo
1
2
3

31w
i
5 ¥
’ Pl L
The domain ?ﬁ the
hossible istof 7 ()" <‘ 4 ‘“”‘>
parameter values The output of the-
function are the
resulting vectors (there
really isn't a ‘range’
although you could
think of the plane
curve as representing
the range of the vector-
valued function.




The domain is defined by the allowable values for both of the parametric equations

If you are determining the domain of a vector-valued function, you start by assuming that the
parameter can take any value, —co <t <

Then remove from the domain any parameter values which either are not allowed:

o ‘The function definition itself may restrict the domain: ~2<r<3
* Inareal-world problem, the parameter ¢ may represent time, in which case negativé values would not make sense.
« Remove any parameter values which make either component parametric equation undefined:

» Dividing by zerc

» Even roots of negatives

» Logarithms of zero or negatives

#1. Find the domain of the vector-valued function: ;?(t) w <~J4 N ?;%»>

’ qy-Lt W—‘b‘tﬁ@ =
'&"W #"2& . ’ ﬁwa E:".‘:; ’
x o TE s E X n
— 0T X TE— -
Y b 22 v L -'z_,,
|V x v o x

Limits and Continuity of Vector-Valued Functions

if you approach a particular value of the parameter from lower and higher values, a particular vector is being approached,
s0 we can define the limit of a vector-valued function as being the vector approached... ‘

- el i v -y
r (t 4’2¢> e AEXE
=31 : 210002
m’
lim#{t) A3
ot ofl4] o
1 1 §-3 142
¥ i)
1,1‘33(‘ 4, 2‘> 2o 2
1 3ls |

o o1
(1!1»5?1 —dy 331135!>

(07-4 300)

A vector-valued function is séid {o be continuous on an inferval i the
function is defined for ali parameter values in the interval and the limit exists

as the parameter approaches every vaiue in the interval,




Derivative of a vector function

Recall from earlier: _ For vector-valued functions:
y
y = fix) FY

The derivative of a function (defined by
the of the slope of the secant line)
givens the slope of the tangent fine to
the curve at x.

A similar limit structure defines the derivative of
the vector function. Before taking the fimit, this
is a vector between two points on the plane
curve which is roughly in the direction of the
curve at the point where #=t.

The vectorvalued function is a vector from the origin to the
point on the plane curve,

The derivative of the vector-valued function is tangent
fo the place curve at this point and represents the
current direction of travel as the parameter is
incréasing {so it is drawn with its initial point on the

“5"(3‘ + k) m?(f) space curve).
h

7(1)=lim

A similar limit structure defines the derivative of

" the vector function. Before taking the limit, this
is a vector between two points on the plane
curve which is roughly in the direction of the
curve at the point where f=f,

Finding the derivative of a vector function at a parameter value

Although you could use limits to evaluate the derivative, typically we find the derivative by simply taking the derivative of
~ each of the parametric equations of the vector-valued function using derivative shoricuts, then plug in parameater values:

Foslr-ad)  F0-(23)

FO={(07 -4 J0)=t40  F©-(20). )= (0. 3) e
F0-(0 -4 30)-(2 1) )= (200). 3=(3) &

Fa9-(e9 -4 fea)-easiz Fas)=(2es). 1)=(s )

i 3

2

As you might imagine, if the parameter { represents time and the vector-valued function represents position, then the
derivative of position gives velocity, but now as a vector we know not anly the speed {magnitude of velocity) but aiso the
direction at every value of time (this is the subject of the next section).




Properties of vector-valued derivatives
Things like product rule, and chain rule still apply...

. a31) ib:l(iz -3i)

#2. Find the derivative of w;;}(a:) ={ ™), e

((,7,;,%) (£%Y) "fg%t (2(:‘3) - »0/35‘9 =3L) (%2) ~> |

lad lé{;? - <ﬁ B ( Z’f:—é%) ) o ( éw-g,m?>z_.‘.

- Because

Integrals with vector-valued functions
integrals are essentially anti-derivatives, we can also find integrais with veciorvalued functions. As with derivatives, we

just take the integral of each component's parametric equation separately:

Indefinite integral: j?(z)a’m(j F@Oa, | g,(t)dz>

Definite intégral: i?(t) dt= (jl: FIQLA ff g(?) dt> |

#3. Evaluate j?(r) dt if ?(z)-m<casg, £ - t)

— . : .
el L mtec, G-t > )
i v, |

L ook | T T

i

T




Unit 8-9: Velocity and Acceleration as Vectors

Motion in one direction only

Earlier we learned that if a function represents distance (displacement) vs time,
then the derivative is velocity and the 2nd derivative is acceleration:

. graph of displacement vs time:
distance {displacement): s{r)=1* ~5f+8 m

_5=8 _ s(i+h)-s(f)

-averags velocity: ¥, ¢ —1 h
1,

A

instantaneous velocity: v(;) }; Ws(t+h) s(t) ()

g §
v(t)'-%m.ﬁ m/s -t t+h
’ ‘ 1D motion graph:
£
acceleration:  a{f)=v'(7) C‘___z_
a(f)=2 m/ s } 4 > S

Motion in 2D

Toanalyze motion in 2 dimensions, we cen represent the posl’zlon on the 20} plane as a vector-valued function (a position
vector' pointing from the origin to the location of the object at that time.

Then the velocity vector is the derivative of the position vector:

position: ?(t)m(x(t), y(t))

velocity: ;)(t) = ;?(t) e (x'(i)., y’(i))

The speed is the magnitude of the velocity vector, but with a vector for velocity we know the
direction the object is travelling at that time.

The acceleraflon vector is then the derivative of the velacity vector (and the 2nd derivative of the position vector):

- accalerafion is in the direction of the
- — force causing this direction change
position: r _(t ) ""”' (x (t)? 4 .(t » y at thg"a point b time ¢

velocity: v (1) =7 (6)=(x(e), (1))

acceleration: ::(t) = ;?(t)m ;3(t) = <x”(t), y"(t))

The 2nd derivative of position is related to concavity but with a position function, what causes
an object in motion to deviate from its course is a force. Newton's 2nd Law of Motion is Fema
which states that if a force in a particlar direction is acting upon an object, there is or
an acceleration of the object in the direction of that force. (The mass is the property :
of matter which resists changing direction when force is applied: small mass = large jz
acceleration for a given force, larger mass = small acceleration for a given force.)

3w



Meaning/interpretation of acceleration

This allows us to explain things like circular motion. Imagine a ball connected to a string, and
twirling the ball around in a circle at constant speed:

Although the speed (magnitude) of the velocity
vector is constant, the direction of velocity is
constaptly changing for the ball to move around
the circle. _

The acceleration vector is always towards the center of the
circle and is caused by the force the string exerts on the ball.

S g in physics, forces always cause acoelerations - but not

o necessatily changes in speed. The change in velodity caused
by the acceleration can be a change in the direction of the
— — velocity vector (even when the speed is not changing).

F =ma

Given one function you can use derivatives or integrals to find the other functions

y (z) position W:(t) | ' :
derivative C ) integral
>0 velocity MO
derivative C ) integral
_ —> - -

a(r) acceleration a(t)

Remember, when you use an integral, vou need to include an integration constant, which in this
case would be a vector.

#1. ?(z):{t" +2c08t, sinf—¢*)
Find "3{:), WZ(!)

;7 (D)= C3b5-25nt) &5t ziﬂ

f%’?@)%{i be-2tart) =Sk 2




#2. "?2(3)%{;; ~10Y, 3(2)@5,2), "}'?(1)%(3*4}

Find v (2), 7 (), 7 (3)
XK= £ _6,-'/0)

VO [PWat = < Ak, e ot+d >

v(Y) =£52> ,
Lez)= L L+ ¢, (D> = £ 1€,

i =3 - Diz. 2%

~ZotD 2

W’@M §~‘¢?¢,ﬁm& < 63{» 364+E - 7, Y e P
Al =¢34 = = ()*+30)+E; -r(’})%z'zf’«)a—f ? <
€=3- \£~~ A——Z\ | F= y—t3>z 713 oo /

2 T - e
‘tﬁm =L F43¢ %, —s¢ ARk~ g

'F?('i) - C gk #%3)“‘”&} 14 :?)KWE(' 3} Y

A?ﬁ@) - \%} i(

&, [FHF2




Displacement vs, Total Distance |

When you take the antiderivative of the velocity function as a vector-valued function, the velocity
includes direction, so the resulting position represents the displacement of the object (the
pusition of the object):

# a

displacement: j';)(t} dt = Gx’(t) dt, I ¥'(1) dt> = ;)(b)w?(a)

If instead you need to find the total distance traveled then you can do a scalar integral of the -
speed:

&
total distance traveled: j'

mg(’)' a *Jq FOT +[y ()] a

1. a()=(22), v)=3.5). r@1)=(26)
Find v (1), r (1), r (2)and total distance traveled from# =0tos=2
b Y
I = Rk = L TERC, LD c=1,D=Y
§ TN 23,57 = Laliype, (FaD? = £ 24 1HR2 ’
557:’ b= L2k, FH 2

P - [Flad=s L LHE+E,
#()~22,60z LI™+IHE,

o
‘ (5”:::0[ 'F"Tﬁé"%ﬁ o> %

[Fth= €13, 3ePre 32

it

P P
FZ@): ( Lyj’:kl/ %67,)34"(('2)4”; = e

Lt Vvt FO o
ﬁ“@)‘wée)fﬁl? = (2, S+77

o MO

Z

Aded At = ( a(ﬂé){d..gs S ﬁw)ay({éaﬂr)m e =] 12.28)

o



2

—

Displacement vs. Total Distance - another example to illustrate the difference

A particle move in the x-y plane according to the position vector r (z)= (2005(!) +1, tsin(¢)+ 2)
Find the displacement and total distance traveled over the interval 1<7<5

. displacement N . total distance travefed
{V(f)dl=<£x’{l'}d‘; _Ey'(ﬂdl)x ?’(b)“‘ !‘(a) ¥ ??(I)} df’mj {[x'(t)]z-—t»[y’(t)}z ot
?(s)m(uos(s)aﬁ»s, Ssin(5)+2) - ' : = oo )
=(5.567, ~2.795) PN Y(()={2sin(1)+1, teos(t)+sin())
7(1)=(2008(1)+1, 1sin(1)+2) ' \ - S f J(=2sin(2)+1)"+ (£oos{r) +sin(1))” ar
=(2.081, 2.841) : : Nkt Nt 11468
ey ) . 0 s ‘\ x ‘the distance along the path
25V 7 TR :
(5,567, ~2.795)~(2.081, 2.841) i NN
(3.486, -5.636) [ N

a vector from the starting point
to the ending point



