
AP Calculus BC – Study Guide: Unit 3 – Derivative Applications 
 
Important Theorems… 

What is the Mean Value Theorem?       Mean Value Theorem                            
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Let f be continuous on a b and

differentiable on a b then there exists
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                                                               (Special case when slope = 0 is called ‘Rolle’s Theorem’) 
 

What do each of these tell us about f ?   What do each of these tell us about f ? 

 f x  is         f x is the y value at x  

 

 f x  is          ' 'f x is the instantaneous rate of change slope at x  
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f x f is increasing

f x f is decreasing
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 f x  is          ' 'f x is the concavity curvature at x  
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f x f is concave up

f x f is concave down
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Critical points occur when…    Critical points occur when   0f x or DNE   

                and the sign of  f x  changes. 

 

Inflection points occur when…    Inflection points occur when   0f x or DNE   

                and the sign of  f x  changes. 

 

Relative (local) max occurs when…   Relative (local) max occurs when   0f x or DNE   

                and the sign of  f x  goes from + to -  

 
 

Relative (local) min occurs when…   Relative (local) min occurs when   0f x or DNE   

                and the sign of  f x  goes from - to +  



Using a graph of the curve f      Using a graph of the curve f  

      

Where is f  increasing?  decreasing?                      
   
     

0,2

2,0 2,4

f is increasing over f going up

decreasing over f going down 
 

 

Where is f  concave up?  concave down?           
   

   

0,2 2,3

2,0 3,4

f is concave up over

concave down over 




 

 

Where is f  continuous?                2,2 2,4f is continuous over    

 

Where is f  differentiable?                  2,0 0,2 2,4f is differentiable over     

 
Where are the following for f ?     Where are the following for f ?   

  
- critical points                                 critical points at (-2,2), (0,0.5), (2.5,1) 
- relative maxima        no relative maxima 
-relative minima      relative minima at (0,0.5) 
- inflection points       inflection points at (0,0.5), (3,1) 
 
What are the absolute max/min over [-2,1]?   What are the absolute max/min over [-2,1]?  
                       Absolute min at (0,0.5), absolute max at (-2,2)   
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Using a graph of the derivative f      Using a graph of the derivative f   

         

Where is f  increasing?  decreasing?           
     
   

5, 2 2,5 0

2,2 0

f is increasing over f

decreasing over f
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 


 

 

Where is f  concave up?  concave down?           
   
   

0,5

5,0

f is concave up over f going up

concave down over f going down




 

 
Where are the following for f ?     Where are the following for f ?   

  
- critical points                                 critical points at x=-2, x=2  [f’ = 0] 
- relative maxima        relative minimum at x = 2  [f’ from – to +] 
-relative minima      relative maximum at x = -2  [f’ from + to -] 
- inflection points              inflection point at x =0 [f’ graph changing direction] 
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evaluate definite integral by plugging limits into antiderivative

b
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We can use the Net ChangeTheorem

part of the Fundamental Theorem of Calculus

f x dx F b F a

This also means an integral of a derivative of something is equal

to the accum
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Pick one limit to be what you have and the other what you need :
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Using a graph of the concavity f      Using a graph of the concavity f    

     

Where is f  concave up?  concave down?           
     
     

1,2 4,6 0

2, 1 2,4 0

f is concave up over f

concave down over f

 

  




 

 
Where inflection points for f ?      Where inflection points for f ?     

         at x =-1, x=2, x=4  [f’’ = 0 and sign is changing] 
 
 
 
Tangent lines… 
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For x y

a Write the equation of the tangent line at

b Where does this curve have horizontal tangents

c Where does this curve have vertical tangents
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For x y

a Write the equation of the gent line at

dy
m use implicit differentiation if needed

dx

dy dy x
x y

dx dx y

y x

b Where does this curve have horizontal tangents
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Position, Velocity (speed), Acceleration… 

In 1D:           In 1D: 

An object moves in one direction with position x  

given by   3 24 3x t t t   . 

(a) Find velocity as function of time. 
(b) What acceleration as a function of time. 
(c) What is the position of the particle at t = 2? 
(d) What is the speed of the particle at t = 2? 
 
 
 
 
 
 
 
 
 
An object is launched upward with an initial velocity of 

30 /m s  from an initial height of 10 m in gravity field  

with   29.8 /a t m s  . 

(a) Find velocity as a function of time. 
(b) Find height as a function of time. 
(c) At what time does the object reach maximum height  
      and what is the max height? 
(d) At what time does the object hit the ground? 
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Related Rates Problems… 
 
A 5-foot long ladder is leaning against a building. 
If the foot of the ladder is sliding away from the  
building at a rate of 2 ft/sec, how fast is the top 
of the ladder moving and in what direction when 
the foot of the ladder is 4 feet from the building? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Optimization Problems… 
A cylindrical can (with circular base) is made with 
a material for the lateral side which costs $3/cm2,  
and a material for the top and bottom circular sides 
which costs $5/cm2.  If the can must enclose a volume 

of 
320 cm what should the radius and height be to  

minimize the material cost? 
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Draw a picture and assign variables to things which vary

then find equations which relate the variables
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Differentiate implicitlyWRT time plug in values and solve
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moving so y is decreasing downward
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Need functions for the objective function

what is being optimized and any constraints.

Objective Function Constraint
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