
AP Calculus BC – Study Guide: Unit 6 – Differential Equations 
 
Slope fields:       Slope fields: 
 

Sketch a slope field for 
1

2

dy
xy

dx
              plug various (x,y) into

                             
dy

dx
 to get slopes at pts 

 
 
 
Which of the following could be a specific solution to the            Solution curves follow the direction in slope field 
 Differential equation with the given slope field:                               (E) [this is an exponential curve shape]                

                                                      
 
Solving separable differential equations:    Solving separable differential equations: 

Find the particular solution for  23 , 2 1
dy

x y y
dx
  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Euler’s method:       Euler’s method:  

 f x  is the solution to the differential equation 

  2 , 1 2
dy

x y y
dx
  .  Use Euler’s method with a  

step size of 0.1 to approximate  1.3f . 

 
(h can be negative) 
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Separate the variables : dy x dx
y

integrate both sides : dy x dx
y

general implicit solution y x C

plug in initial condition : C

solve for C : C C

write the particular implicit solution

y x

if needed s
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Differential Equation Models:     Differential Equation Models: 
 
Write the differential equation and solution equations:                 
 
Unrestricted population growth:    Unrestricted population growth: 

0: :

:

kt

rt

dP
DE kP solution P Pe

dt

Continuously compounded interest is same form

dA
kA A Pe

dt

 

 

 

 
 
Radioactive Decay:      Radioactive Decay: 

 

0: : ktdQ
DE kQ solution Q Q e

dt

halflife time for quantity to reduce by half

 



 

 
 
Logistic Model Growth:      Logistic Model Growth: 

,

: 1 :
1

1

2

kt

growth limited by environment

maximum population=carrying capacity L

dP P L
DE kP solution P

dt L Ce

population grows fastest when P L



 
   

 

 
 

 

 

 
 
 
Unrestricted population growth example: 
A rabbit population with an initial size of 500 grows at  
A rate proportional to its size.  If there are1200 rabbits  
At t = 10 days, when was the rabbit population 900? 
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solve for t when P
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Logistic growth example: 
The number of moose in a national park is modeled 

by the function  M t  that satisfies the logistical  

differential equation  23 3
0 50

5 1000

dM
M M and M

dt
   . 

(a) What is  lim
t

M t


? 

(b) What is the population of moose when the number 
of moose is growing most rapidly? 
(c) At what time does max rate of growth occur? 
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dP P
a logistic DE form kP

dt L

dM
factoring to get the M M

dt

dM M
M so carrying capacity

dt

 
  

 

 
  

 

 
   

 

 

,

lim

200

t

From curve shape

M t carrying capacity






 

 

 

3

5

:

100 .

3
: 1 1

5 200

200
:

1
1

: 0 50:

2
50

kt
t

b Fastest growth for logistic occurs when population

is half the carrying capacity

When there are moose

dM M P
c DE form M kP

dt L

L
solution form M

Ce
Ce

using initial condition M
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