" DIffEq - Ch 3 - Required Practice

%< #1. The population of a community is known to
_ increase at a rate proportional to the number of
" people present at time 7. If an initial population Py
has doubled in 5 years, how long will it take the
population... '
(a) ...to triple?

(b) ...to quadruple? » _
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#2. Suppose it is known that the population of the
community in Problem #1 is 10,000 after 3 years.
(a) What was the initial population Py ?

(b) What will the population be in-10 years?

(c) How fast is the population growing at £ = 107
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#3. Initially 100 milligrams of a radioactive

substance was present. After 6 hours the mass had
‘decreased by 3%. If the rate of decay is RS
proportional to the amount of the substance present o

at time ¢, find the amount remamlng after 24 hours.
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#4. Determine the half-life of the radioactive
substance described in Problem #3.
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| #5. When interest is compounded continuously,

the amount of money increases at a rate

| proportional to the amount A present at time 7, that

. dA . .
1s —6-17 =rA , where r is the annual rate of interest.

() Find the amount of money accrued at the end of
5 years when $5000 is deposited in an investment
account drawing 5.75% annual interest
compounded continuously.

(b) In how many years will the initial sum
deposited have doubled?
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#6. A thermometer is removed from a room where
the temperature if 70 °F and is taken outside, where
the air temperature is 10 °F. After 30 seconds the
thermometer reads 50 °F.

(a) What will the thermometer temperature reading

by at =1 min? -
(b) How long will it take for the thermometer
reading to reach 15 °F?
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#7. A small metal bar, whose initial temperature
was 20 °C, is dropped into a large container of
boiling water.

(a) How long will it take the bar to reach 90 °C if it
is known that its temperature increase 2°C in the
first second?

(b) How long will it take for the bar to reach a
temperature of 98 °C?
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#8. A 30-Volt electromotive force is applied to an
LR series circuit in which the inductance is 0.1
‘Henry and the resistance is 50 Ohms.

(a) Find the equation for current as a function of

time i(¢) if i(0)=0.
(b) Determine the current at £ — .
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' #9. A 100-Volt electromotive force is applied to

- an RC series circuit in which the resistance is 200
" Ohms and the capacitance is 10™ Farad. '
(a) Find the charge on the capacitor as a function of

time g(¢) if ¢(0)=0.

(b) Find the current as a function of time i(¢).
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#10. Suppose a small cannonball weighing 16
pounds is shot vertically upward with an initial

velocity v, =300 fi/s. The answer to the question S

“How high does the cannonball go?” depends upon
whether we take air resistance into account or not.

¢a) Suppose air resistance is ignored. If the
positive direction is upward, then a model for the
state of the cannonball is given by:
s
ar’
Since g—st— =y (t) the last differential equation is the
same as:
dv
dt

where we take g =32 ft/s” .
Find the velocity of the cannonball at time 7.
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(b) Use'the result obtained in part (a) to determine
the height s(?) of the cannonball measured from
ground level.

(¢) Find the maximum height attained by the
cannonball.
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#11. Repeat problem #10, but this time, assume
that air resistance is proportional to instantaneous
velocity. Use the following differential equation:

dv \
m " mg — kv \
...and assume k = 0.0025. \
(a) Find the velocity of the cannonball at time .
(b) Use the result obtained in part (a) to de)[ermme
the height s(?) of the cannonball measured f; ffom
ground level.

(c) Find the maximum height attained by thxa

cannonball.
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#12. Two large containers 4 and B of the same
size are filled with different fluids. The fluids in
containers 4 and B are maintained at 0°C

and 100 °C, respectively. A small metal bar,
whose initial temperature is 100 °C, is lowered into
container 4. After 1 minute the temperature of the
bar is 90 °C. After 2 minutes the bar is removed |
from container 4 and instantly transferred to
container B. After 1 minute in container B the
temperature of the bar rises 10 °C.

How long, measured from the start of the entire
process, will it take for the bar to reach a
temperature of 99 °C?
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#1. If a constant number /4 of fish are harvested

from a fishery per unit time, than a model for the

population P(#) of the fishery at time ¢ is given by:
Egti_p(a-bp)_h, P(0)=2,

where a, b, h, and Py are positive constants.

Suppose a=5, b=1, and h=4.

(a) Since the DE is autonomous, use the phase
portrait concept to sketch representative solution
curves corresponding to the cases

P>4, 1<P <4, and O0<F <1.

Determine the long-term behavior of the
population in each case. *
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(b) Solve the differential equation initial-value
problem. Then verify the results of your phase
portrait in part (a) by graphing the solution with an
initial condition taken from each of the three

intervals given. 92 p
dg p( =P =450
S-e/‘m& *———' 4)” 5"”\6'

arfiak Lpachion 4sr )-cf‘f“ )’”‘7”'#“'

- S‘P.e\( = (("" "D(p"“’
= Eam &M';;‘ '-73‘ 17 ) _
@ ,qp = gﬂgf *‘['A i

—

(c) Use the information in parts (a) and (b)|to E
determine whether the fishery population becomes
extinct in finite time. If so, find that time.|
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