Theorems from group activity:

1)

2)

3)

#1. Given: diagram as marked Find: $m \angle B$

#2. Given: $m \angle 1 = 130^{\circ}$ $m \angle 7 = 70^{\circ}$ Find the remaining angles.

#3. Find *m∠D*

#4. If WX=18, find VY

Geometry, 7.2 Notes –'No Choice' Theorem and AAS Triangle Congruency Shortcut

Find the missing angles in these two triangles:

What can you conclude? **The 'no choice' theorem**:

Now we can add a 5th triangle congruency shortcut: AAS

#1. Given: $\overline{JM} \perp \overline{GM}$ $\overline{GK} \perp \overline{KJ}$ Prove: $\angle G \cong \angle J$

#2. Given: $\overline{CB} \perp \overline{AB}$ $\overline{DE} \parallel \overline{AB}$ $m \angle CDE = 40^{\circ}$

Find: $m \angle A, m \angle C, m \angle CED$

 $\angle A \cong \angle X$ #3. Given: $\angle AVZ \cong \angle XYB$ $\angle ZVB \cong \angle YBX$ Prove:
VBYZ is a parallelogram $A \qquad Z \qquad Y$

Names of po	olygons:	number o 3 4 5 6 7 8 9 10 11 11 11 11 11 11	<u>f sides (n)</u>	name
Sum of interior angles of a polygon:			Sum of	interior angles = S_i =
Examples:	triangle (n=3) quadrilateral (n=4) pentagon (n=5) 27-gon (n=27)	$S_i =$ $S_i =$ $S_i =$ $S_i =$		
Sum of exterior angles of a polygon:			Sum o	f exterior angles = S_e =
Examples:	triangle (n=3) pentagon (n=5) 27-gon (n=27)	$S_e =$ $S_e =$ $S_e =$		
Number of diagonals of a polygon:			numbe	er of diagonals = $d = \frac{n(n-3)}{2}$
Examples:	triangle (n=3)	d =		
	pentagon (n=5)	d =		
	27-gon (n=27)	<i>d</i> =		

#1. Find the polygon whose sum of interior angles is 900°

#2. What is the sum of interior angles and sum of exterior angles for an 18-sided polygon?

#3. Find one exterior angle for each vertex of the polygon and find the sum of these exterior angles.

60°

50

70°

#5. What polygon has 35 diagonals?

'Regular' = equilateral and equiangular

External angle of a polygon:

External angles of a regular polygon:

Examples:

#1. Find the measure of an exterior angle of a regular hexagon:

#2. Find the measure of each angle of an equiangular nonagon:

#3. If each angle of a polygon is 108° how many sides does the polygon have?

#4. Find the number of sides of an equiangular polygon if each of its exterior angles is 36°: